• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 6
  • Tagged with
  • 36
  • 35
  • 31
  • 26
  • 24
  • 22
  • 21
  • 19
  • 17
  • 16
  • 13
  • 13
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

An Empirical Study on Using Codex for Automated Program Repair

Zhao, Pengyu January 2023 (has links)
This thesis explores the potential of Codex, a pre-trained Large Language Model (LLM), for Automated Program Repair (APR) by assessing its performance on the Defects4J benchmark that includes real-world Java bugs. The study aims to provide a comprehensive understanding of Codex’s capabilities and limitations in generating syntactically and semantically equivalent patches for defects, as well as evaluating its ability to handle defects with different levels of importance and complexity. Additionally, we aim to compare the performance of Codex with other LLMs in the APR domain. To achieve these objectives, we employ a systematic methodology that includes prompt engineering, Codex parameter adjustment, code extraction, patch verification, and Abstract Syntax Tree (AST) comparison. We successfully verified 528 bugs in Defects4J, which represents the highest number among other studies, and achieved 53.98% of plausible and 26.52% correct patches. Furthermore, we introduce the elle-elle-aime framework, which extends the RepairThemAll for Codex-based APR and is adaptable for evaluating other LLMs, such as ChatGPT and GPT-4. The findings of this empirical study provide valuable insights into the factors that impact Codex’s performance on APR, helping to create new prompt strategies and techniques that improve research productivity. / Denna avhandling utforskar potentialen hos Codex, en förtränad LLM, för APR genom att utvärdera dess prestanda på Defects4J-benchmarket som inkluderar verkliga Java-buggar. Studien syftar till att ge en omfattande förståelse för Codex förmågor och begränsningar när det gäller att generera syntaktiskt och semantiskt ekvivalenta patchar för defekter samt att utvärdera dess förmåga att hantera defekter med olika nivåer av betydelse och komplexitet. Dessutom är vårt mål att jämföra prestanda hos Codex med andra LLM inom APR-området. För att uppnå dessa mål använder vi en systematisk metodik som inkluderar prompt engineering, justering av Codex-parametrar, kodextraktion, patchverifiering och jämförelse av AST. Vi verifierade framgångsrikt 528 buggar i Defects4J, vilket representerar det högsta antalet bland andra studier, och uppnådde 53,98% plausibla och 26,52% korrekta patchar. Vidare introducerar vi elle-elle-aime ramverket, som utvidgar RepairThemAll för Codex-baserad APR och är anpassningsbart för att utvärdera andra LLM, såsom ChatGPT och GPT-4. Resultaten av denna empiriska studie ger värdefulla insikter i de faktorer som påverkar Codex prestanda på APR och hjälper till att skapa nya promptstrategier och tekniker som förbättrar forskningsproduktiviteten.
12

Repairing Swedish Automatic Speech Recognition / Korrigering av Automatisk Taligenkänning för Svenska

Rehn, Karla January 2021 (has links)
The quality of automatic speech recognition has increased dramatically the last few years, but the performance for low and middle resource languages such as Swedish is still far from optimal. In this project a language model trained on large written corpora called KB-BERT is utilized to improve the quality of transcriptions for Swedish. The large language model is inserted as a repairing module after the automatic speech recognition, aiming to repair the original output into a transcription more closely resembling the ground truth by using a sequence to sequence translating approach. Two automatic speech recognition models are used to transcribe the speech, one of the models are developed in this project using the Kaldi framework, the other model is Microsoft’s Azure Speech to text platform. The performance of the translator is evaluated with four different datasets, three consisting of read speech and one of spontaneous speech. The spontaneous speech and one of the read datasets include both native and non-native speakers. The performance is measured by three different metrics, word error rate, a weighted word error rate and a semantic similarity. The repairs improve the transcriptions of two of the read speech datasets significantly, decreasing the word error rate from 13.69% to 3.05% and from 36.23% to 21.17%. The repairs improve the word error rate from 44.38% to 44.06% on the data with spontaneous speech, and fail on the last read dataset, instead increasing the word error rate. The lower performance on the latter is likely due to lack of data. / Automatisk taligenkänning har förbättrats de senaste åren, men för små språk såsom svenska är prestandan fortfarande långt ifrån optimal. Det här projektet använder KB-BERT, en neural språkmodell tränad på stora mängder skriven text, för att förbättra kvalitén på transkriptioner av svenskt tal. Transkriptionerna kommer från två olika taligenkänningsmodeller, dels en utvecklad i det här projektet med hjälp av mjukvarubiblioteket Kaldi, dels Microsoft Azures plattform för tal till text. Transkriptionerna repareras med hjälp av en sequence-to-sequence översättningsmodell, och KB-BERT används för att initiera modellen. Översättningen sker från den urpsrungliga transkriptionen från en av tal-till-text-modellerna till en transkription som är mer lik den korrekta, faktiska transkriptionen. Kvalitéen på reparationerna evalueras med tre olika metriker, på fyra olika dataset. Tre av dataseten är läst tal och det fjärde spontant, och det spontana talet samt ett av de lästa dataseten kommer både från talare som har svenska som modersmål, och talare som har det som andraspråk. De tre metrikerna är word error rate, en viktad word error rate, samt ett mått på semantisk likhet. Reparationerna förbättrar transkriptionerna från två av de lästa dataseten markant, och sänker word error rate från 13.69% till 3.05% och från 36.23% till 21.17%. På det spontana talet sänks word error rate från 44.38% till 44.06%. Reparationerna misslyckas på det fjärde datasetet, troligen på grund av dess lilla storlek.
13

Active Learning for Named Entity Recognition with Swedish Language Models / Aktiv Inlärning för Namnigenkänning med Svenska Språkmodeller

Öhman, Joey January 2021 (has links)
The recent advancements of Natural Language Processing have cleared the path for many new applications. This is primarily a consequence of the transformer model and the transfer-learning capabilities provided by models like BERT. However, task-specific labeled data is required to fine-tune these models. To alleviate the expensive process of labeling data, Active Learning (AL) aims to maximize the information gained from each label. By including a model in the annotation process, the informativeness of each unlabeled sample can be estimated and hence allow human annotators to focus on vital samples and avoid redundancy. This thesis investigates to what extent AL can accelerate model training with respect to the number of labels required. In particular, the focus is on pre- trained Swedish language models in the context of Named Entity Recognition. The data annotation process is simulated using existing labeled datasets to evaluate multiple AL strategies. Experiments are evaluated by analyzing the F1 score achieved by models trained on the data selected by each strategy. The results show that AL can significantly accelerate the model training and hence reduce the manual annotation effort. The state-of-the-art strategy for sentence classification, ALPS, shows no sign of accelerating the model training. However, uncertainty-based strategies consistently outperform random selection. Under certain conditions, these strategies can reduce the number of labels required by more than a factor of two. / Framstegen som nyligen har gjorts inom naturlig språkbehandling har möjliggjort många nya applikationer. Det är mestadels till följd av transformer-modellerna och lärandeöverföringsmöjligheterna som kommer med modeller som BERT. Däremot behövs det fortfarande uppgiftsspecifik annoterad data för att finjustera dessa modeller. För att lindra den dyra processen att annotera data, strävar aktiv inlärning efter att maximera informationen som utvinns i varje annotering. Genom att inkludera modellen i annoteringsprocessen, kan man estimera hur informationsrikt varje träningsexempel är, och på så sätt låta mänskilga annoterare fokusera på viktiga datapunkter. Detta examensarbete utforskar hur väl aktiv inlärning kan accelerera modellträningen med avseende på hur många annoterade träningsexempel som behövs. Fokus ligger på förtränade svenska språkmodeller och uppgiften namnigenkänning. Dataannoteringsprocessen simuleras med färdigannoterade dataset för att evaluera flera olika strategier för aktiv inlärning. Experimenten evalueras genom att analysera den uppnådda F1-poängen av modeller som är tränade på datapunkterna som varje strategi har valt. Resultaten visar att aktiv inlärning har en signifikant förmåga att accelerera modellträningen och reducera de manuella annoteringskostnaderna. Den toppmoderna strategin för meningsklassificering, ALPS, visar inget tecken på att kunna accelerera modellträningen. Däremot är osäkerhetsbaserade strategier är konsekvent bättre än att slumpmässigt välja datapunkter. I vissa förhållanden kan dessa strategier reducera antalet annoteringar med mer än en faktor 2.
14

Text Content Features for Hybrid Recommendations : Pre-trained Language Models for Better Recommendations

Lazarova, Mariya January 2021 (has links)
Nowadays, with the ever growing availability of options in many areas of our lives, it is crucial to have good ways to navigate your choices. This is why recommendation engines’ role is growing more important. Recommenders are often based on user-item interaction. In many areas like news and podcasts, however, by the time there is enough interaction data for an item, the item has already become irrelevant. This is why incorporating content features is desirable, as the content does not depend on the popularity or novelty of an item. Very often, there is text describing an item, so text features are good candidates for features within recommender systems. Within Natural Language Processing (NLP), pre-trained language models based on the Transformer architecture have brought a revolution in recent years, achieving state-of-the-art performance on many language tasks. Because of this, it is natural to explore how such models can play a role within recommendation systems. The scope of this work is on the intersection between NLP and recommendation systems where we investigate what are the effects of adding BERT-based encodings of titles and descriptions of movies and books to a recommender system. The results show that even in off-the-shelf BERT-models there is a considerable amount of information on movie and book similarity. It also shows that BERT based representations could be used in a recommender system for user recommendation to combine the best of collaborative and content representations. In this thesis, it is shown that adding deep pre-trained language model representations could improve a recommender system’s capability to predict good items for users with up to 0.43 AUC-ROC score for a shallow model, and 0.017 AUC-ROC score for a deeper model. It is also shown that SBERT can be fine-tuned to encode item similarity with up to 0.03 nDCG and up to 0.05 nDCG@10 score improvement. / Med den ständigt växande tillgängligheten av val i många delar av våra liv har det blivit viktigt att enkelt kunna navigera kring olika alternativ. Det är därför rekommendationssystems har blivit viktigare. Rekommendationssystem baseras ofta på interaktion-historiken mellan användare och artikel. När tillräckligt mycket data inom nyheter och podcast har hunnits samlats in för att utföra en rekommendation så har artikeln hunnit bli irrelevant. Det är därför det är önskvärt att införa innehållsfunktioner till rekommenderaren, då innehållet inte är beroende av popularitet eller nymodigheten av artikeln. Väldigt ofta finns det text som beskriver en artikel vilket har lett till textfunktioner blivit bra kandidater som funktion för rekommendationssystem. Inom Naturlig Språkbehandling (NLP), har förtränande språkmodeller baserad på transformator arkitekturen revolutionerat området de senaste åren. Den nya arkitekturen har uppnått toppmoderna resultat på flertal språkuppgifter. Tack vare detta, har det blivit naturligt att utforska hur sådana modeller kan fungera inom rekommendationssystem. Det här arbetet är mellan två områden, NLP och rekommendationssystem. Arbetet utforskar effekten av att lägga till BERT-baserade kodningar av titel och beskrivning av filmer, samt böcker till ett rekommendationssystem. Resultaten visar att även i förpackade BERT modeller finns det mycket av information om likheter mellan film och böcker. Resultaten visar även att BERT representationer kan användas i rekommendationssystem för användarrekommendationer, i kombination med kollaborativa och artikel baserade representationer. Uppsatsen visar att lägga till förtränade djupspråkmodell representationer kan förbättra rekommendationssystemens förmåga att förutsäga bra artiklar för användare. Förbättringarna är upp till 0.43 AUC-ROC poäng för en grundmodell, samt 0.017 AUC-ROC poäng för en djupmodell. Uppsatsen visar även att SBERT kan bli finjusterad för att koda artikel likhet med upp till 0.03 nDCG och upp till 0.05 nDCG@10 poängs förbättring.
15

Bidirectional Encoder Representations from Transformers (BERT) for Question Answering in the Telecom Domain. : Adapting a BERT-like language model to the telecom domain using the ELECTRA pre-training approach / BERT för frågebesvaring inom telekomdomänen : Anpassning till telekomdomänen av en BERT-baserad språkmodell genom ELECTRA-förträningsmetoden

Holm, Henrik January 2021 (has links)
The Natural Language Processing (NLP) research area has seen notable advancements in recent years, one being the ELECTRA model which improves the sample efficiency of BERT pre-training by introducing a discriminative pre-training approach. Most publicly available language models are trained on general-domain datasets. Thus, research is lacking for niche domains with domain-specific vocabulary. In this paper, the process of adapting a BERT-like model to the telecom domain is investigated. For efficiency in training the model, the ELECTRA approach is selected. For measuring target- domain performance, the Question Answering (QA) downstream task within the telecom domain is used. Three domain adaption approaches are considered: (1) continued pre- training on telecom-domain text starting from a general-domain checkpoint, (2) pre-training on telecom-domain text from scratch, and (3) pre-training from scratch on a combination of general-domain and telecom-domain text. Findings indicate that approach 1 is both inexpensive and effective, as target- domain performance increases are seen already after small amounts of training, while generalizability is retained. Approach 2 shows the highest performance on the target-domain QA task by a wide margin, albeit at the expense of generalizability. Approach 3 combines the benefits of the former two by achieving good performance on QA both in the general domain and the telecom domain. At the same time, it allows for a tokenization vocabulary well-suited for both domains. In conclusion, the suitability of a given domain adaption approach is shown to depend on the available data and computational budget. Results highlight the clear benefits of domain adaption, even when the QA task is learned through behavioral fine-tuning on a general-domain QA dataset due to insufficient amounts of labeled target-domain data being available. / Dubbelriktade språkmodeller som BERT har på senare år nått stora framgångar inom språkteknologiområdet. Flertalet vidareutvecklingar av BERT har tagits fram, bland andra ELECTRA, vars nyskapande diskriminativa träningsprocess förkortar träningstiden. Majoriteten av forskningen inom området utförs på data från den allmänna domänen. Med andra ord finns det utrymme för kunskapsbildning inom domäner med områdesspecifikt språk. I detta arbete utforskas metoder för att anpassa en dubbelriktad språkmodell till telekomdomänen. För att säkerställa hög effektivitet i förträningsstadiet används ELECTRA-modellen. Uppnådd prestanda i måldomänen mäts med hjälp av ett frågebesvaringsdataset för telekom-området. Tre metoder för domänanpassning undersöks: (1) fortsatt förträning på text från telekom-området av en modell förtränad på den allmänna domänen; (2) förträning från grunden på telekom-text; samt (3) förträning från grunden på en kombination av text från telekom-området och den allmänna domänen. Experimenten visar att metod 1 är både kostnadseffektiv och fördelaktig ur ett prestanda-perspektiv. Redan efter kort fortsatt förträning kan tydliga förbättringar inom frågebesvaring inom måldomänen urskiljas, samtidigt som generaliserbarhet kvarhålls. Tillvägagångssätt 2 uppvisar högst prestanda inom måldomänen, om än med markant sämre förmåga att generalisera. Metod 3 kombinerar fördelarna från de tidigare två metoderna genom hög prestanda dels inom måldomänen, dels inom den allmänna domänen. Samtidigt tillåter metoden användandet av ett tokenizer-vokabulär väl anpassat för båda domäner. Sammanfattningsvis bestäms en domänanpassningsmetods lämplighet av den respektive situationen och datan som tillhandahålls, samt de tillgängliga beräkningsresurserna. Resultaten påvisar de tydliga vinningar som domänanpassning kan ge upphov till, även då frågebesvaringsuppgiften lärs genom träning på ett dataset hämtat ur den allmänna domänen på grund av otillräckliga mängder frågebesvaringsdata inom måldomänen.
16

Factors influencing readiness of adopting AI : A qualitative study of how the TOE framework applies to AI adoption in governmental authorities / Inflytelserika faktorer inför implementering av AI : En kvalitativ studie om hur TOE-ramverket kan användas för implementering av AI i myndigheter

Stenberg, Louise, Nilsson, Svante January 2020 (has links)
Artificial intelligence is increasing in interest and it is creating value to many organizations world-wide. Due to the potential, governmental authorities in Sweden who work with large volumes of text documents are interested in natural language processing models, which is a sub field of AI and have started to incorporate it to their organizations. This study explores and discusses factors that are influential for governmental authorities when adopting AI and highlights ethical aspects which are of importance for the adoption process. This is explored through a literature review which lead to a frame of reference built on the Technology Organization Environment framework (TOE), which then was tested through interviews with project leaders and AI architects at governmental authorities who are working with language models. The results show that the TOE framework is suitable for analysing AI adoption for governmental authorities. The factors that are found influential are Relative Advantage, Compatibility and Complexity, Management support, Staff capacity, Regulatory environment and Cooperation. Furthermore, the findings suggest that AI Ethics and Data access are influential in all three contexts of technology, organization and environment. The findings of this study confirm results from previous research regarding adoption of new technology, and also provides the literature with exploring the adoption process of AI in governmental authorities, which was not widely explored in literature on beforehand. / Allt fler intresserar sig för artificiell intelligens då det skapar värde för många organisationer. Svenska myndigheter som arbetar med stora mängder textdokument ser potentialen i AI och har börjat implementera språkmodeller, ett sorts AI, i sina organisationer. Den här studien utforskar och diskuterar faktorer som är inflytelserika inför implementering av AI och belyser etiska aspekter som är viktiga för implementationsprocessen. Detta har utforskats först genom en litteraturstudie, ur vilken ett ramverk som bygger på Teknologi Organisation Miljö-ramverket (TOE) har tagits fram. Detta har sedan testats genom intervjuer med projektledare och AI arkitekter på svenska myndigheter som arbetar med språkmodeller. Resultaten visar att TOE-ramverket lämpar sig väl för att analysera adoptering av AI i myndigheter. Faktorerna som har identifierats som inflytelserika är relativ fördel, kompatibilitet, komplexitet, ledningsstöd, anställdas kapacitet, regleringskontext och samarbete. Dessutom föreslås det att etik för AI och datatillgång ska spänna över alla tre kontexter inom TOE. Resultaten av studien bekräftar tidigare forskning gällande adoptering av nya teknologier, och den bidrar även till litteraturen genom att utforska adopteringsprocessen av AI i myndigheter, vilket inte har utforskats i större utsträckning tidigare.
17

The Impact of the Retrieval Text Set for Text Sentiment Classification With the Retrieval-Augmented Language Model REALM / Effekten av hämtningstextsetet för sentimenttextklassificering med den hämtningsförstärkta språkmodellen REALM

Blommegård, Oscar January 2023 (has links)
Large Language Models (LLMs) have demonstrated impressive results across various language technology tasks. By training on large corpora of diverse text collections from the internet, these models learn to process text effectively, allowing them to acquire comprehensive world knowledge. However, this knowledge is stored implicitly in the parameters of the model, and it is necessary to train ever-larger networks to capture more information. Retrieval-augmented language models have been proposed as a way of improving the interpretability and adaptability of normal language models by utilizing a separate retrieval text set during application time. These models have demonstrated state-of-the-art results on knowledge-intensive tasks such as question-answering and fact-checking. However, their effectiveness in text classification remains unexplored. This study investigates the impact of the retrieval text set on the performance of the retrieval-augmented language model REALM model for sentiment text classification tasks. The results indicate that the addition of retrieval text data fails to improve the prediction capabilities of REALM for sentiment text classification tasks. This outcome is mainly due to the difference in functionality of the retrieval mechanisms during pre-training and fine-tuning. During pre-training, the neural knowledge retriever focuses on retrieving factual knowledge such as dates, cities and names to enhance the prediction of the model. During fine-tuning, the retriever aims to retrieve texts that can strengthen the prediction of the text sentiment classification task. The findings suggest that retrieval models may hold limited potential to enhance performance for text sentiment classification tasks. / Stora språkmodeller har visat imponerande resultat inom många olika språkteknologiska uppgifter. Genom att träna på stora textmängder från internet lär sig dessa modeller att effektivt processa text, vilket gör att de kan förvärva omfattande världskunskap. Denna kunskap lagras emellertid implicit i modellernas parametrar, och det är nödvändigt att träna allt större nätverk för att fånga mer information. Hämtningsförstärkta språkmodeller (retrieval-augmented language models) har föreslagits som ett sätt att förbättra tolknings- och anpassningsförmågan hos språkmodeller genom att använda en separat hämtningstextmängd (retrieval text set) vid prediktion. Dessa modeller har visat imponerande resultat på kunskapsintensiva uppgifter som frågebesvarande (question-answering) och faktakontroll. Deras effektivitet för textklassificering är dock outforskad. Denna studie undersöker effekten av hämtningstextmängden på prestandan för den hämtningsförstärkta språkmodellen REALM för sentimenttextklassificeringsuppgifter. Resultaten indikerar att användning av hämtningstextmängd vid predicering inte lyckas förbättra REALM prediktionsförmåga för sentimenttextklassificeringsuppgifter. Detta beror främst på skillnaden i funktionalitet hos hämtningsmekanismen under förträning och finjustering. Under förträningen fokuserar hämtningsmekanismen på att hämta fakta som datum, städer och namn för att förbättra modellens predicering. Under finjusteringen syftar hätmningsmekanismen till att hämta texter som kan stärka förutsägelsen av sentimenttextklassificeringsuppgiften. Resultaten tyder på att hämtningsförstärkta modeller kan ha begränsad potential att förbättra prestandan för sentimenttextklassificeringsuppgifter.
18

Leveraging Generative AI in Enterprise Settings : A Case Study-Based Framework / Generativ AI i företagsmiljöer : ett fallstudiebaserat ramverk

Ageling, Lisette Elisabet, Nilsson, Elliot January 2024 (has links)
The emergence of Generative AI (GenAI) foundation models presents transformative potential across industries, promising not only to increase productivity but also to pioneer new ways of working and introduce novel business models. Despite this, GenAI adoption levels have lagged behind early projections, and many firms report difficulties in finding appropriate applications. One such firm is Scandic Hotels, a Swedish hospitality company seeking to identify use cases for GenAI within the Scandic Data Platform (SDP), the firm’s analytics unit. The goals of this study were twofold: firstly, to identify GenAI use cases for the SDP based on their organizational needs, and secondly, to create a framework to guide organizations in harnessing the technology’s potential purposefully based on their specific organizational contexts. A conceptual framework was developed based on a synthesis of existing AI use case frameworks and the incorporation of GenAI characteristics to guide the investigation of the SDP. A qualitative case study approach was employed, achieving the first research goal through two primary activities: first, by assessing the organizational context through interviews and a questionnaire, and subsequently, by identifying concrete use cases designed to address organizational challenges based on the domain mapping through collaborative workshops. The investigation into the organizational context culminated in the formulation of a complex problem space with eleven logically interconnected domain problems stemming from two root causes: a high technological complexity of the data platform and a lack of organizational ownership concerning data. These problems lead the SDP to be occasionally overwhelmed with support requests, resulting in a range of time-consuming downstream issues that lock the team in reactive rather than proactive work. The use case identification process yielded eleven concrete use cases leveraging a range of GenAI technologies, including retrieval-augmented generation, fine-tuning, and prompt chaining. An evaluation based on the perceived business value of these use cases found that those directly addressing root problems or contributing to strategic imperatives received the highest value scores by members of the SDP. Our findings reinforce the problem-driven use case identification approach suggested by previous AI use case literature and offer nuances in the importance of basing use cases on a structured hierarchical problem space, allowing use cases to be designed to address root problems and break negative feedback loops for maximal business value. By iterating the literature-informed conceptual framework with these practical insights, a novel framework for GenAI use case formulation was developed, centered around matching root domain problems with GenAI-specific capabilities. This framework provides an overview of key components for the identification of use cases based on the organization’s unique context, contributing important starting points for managers wishing to engage in GenAI adoption and addressing the literature gap in GenAI-specific use case exploration frameworks. / Utvecklingen av grundmodeller inom generativ AI (GenAI) har demonstrerat potential att öka produktivitet, omdefiniera befintliga arbetsflöden och införa nyskapande affärsmodeller. Trots detta har införandegraden i näringslivet legat under tidigare prognosticerade nivåer, och många företag rapporterar svårigheter med att identifiera lämpliga tillämpningar. Ett exempel på ett sådant företag är den svenska hotellkedjan Scandic, som önskar identifiera interna användningsområden för GenAI inom analysenheten i företagets centrala organisation, Scandic Data Platform (SDP). Denna studie ämnade att först identifiera användningsfall för GenAI inom SDP baserat på enhetens specifika behov, och sedan utveckla ett ramverk för att vägleda organisationer i identifieringen av GenAI-användningsfall baserat på deras specifika organisatoriska kontext. Baserat på en syntes av befintlig litteratur inom AI-användningsfall och integreringen av karaktäristiska egenskaper för GenAI konstruerades ett konceptuellt ramverk för att orientera utredningen inom SDP. En kvalitativ fallstudieansats uppdelad i två huvudaktiviteter tillämpades för att uppnå det första forskningsmålet: först undersöktes den organisatoriska kontexten genom nio intervjuer samt en enkät, sedan identifierades konkreta användningsfall utformade för att behandla organisatoriska behov förankrade i kartläggningen av domänen genom kollaborativa workshoppar. Undersökningen av den organisatoriska kontexten kulminerade i formuleringen av en komplext problemrymd med elva logiskt sammanlänkade domänproblem härrörande från två grundorsaker: en hög teknologisk komplexitet hos dataplattformen och en brist på organisatoriskt ägarskap gällande data. Dessa problem leder till att SDP ibland överväldigas av supportförfrågningar, vilket resulterar i en rad tidskrävande efterföljande problem som låser in teamet i reaktivt snarare än proaktivt arbete. Identifiering av användningsfall resulterade i formuleringen av elva konkreta användningsfall som utnyttjar en rad GenAI-teknologier såsom retrieval-augmented generation, finjustering och promptkedjning. En utvärdering baserad på det uppskattade affärsvärdet av dessa visade att de användningsfall som direkt bemötte de två rotproblemen eller bidrog uppfyllandet av strategiska imperativ fick de högsta värdebetygen av SDP:s medlemmar. Våra resultat validerar framgången i det problemstyrda tillvägagångssättet för identifiering av användningsfall som föreslagits av tidigare litteratur, men nyanserar förfarandet genom att understryka vikten av att förankra användningsfall i en hierarkiskt strukturerad problemrymd—vilket gör att användningsfall kan utformas för att direkt bemöta rotproblem och bryta negativa återkopplingsslingor för att uppnå maximalt organisatoriskt värde. Genom att iterera det litteraturinformerade konceptuella ramverket med dessa praktiska insikter utvecklades vi ett nytt ramverk för identifieringen av GenAI-användningsfall, baserat på matchningen av rotproblemen inom domänen med GenAI-specifika kapaciteter. Detta ramverk ger en översikt över nyckelkomponenter för identifiering av användningsfall baserade på den organisatoriska kontexten. På så sätt bidrar studien med en utgångspunkt för företag som önskar engagera sig i införandet av GenAI och bemöter bristen på litteratur innehållandes GenAI-specifika ramverk för utforskning av användningsfall.
19

Evaluating ChatGPT's Effectiveness in Web Accessibility for the Visually Impaired / En utvärdering av ChatGPTs effektivitet inom tillängligt innehåll på webben för synskadade

Holmlund, Miranda January 2024 (has links)
Web accessibility is essential for making the internet available to everyone, including individuals with disabilities. This study explores ChatGPT-4s potential in improving webaccessibility for visually impaired users by evaluating its effectiveness in interpreting andconveying web content with accessibility issues.The methodology involved creating websites with intentional accessibility barriers, craftingprompts to simulate real-time issues, and using ChatGPT-4 to provide solutions. Data was gathered from both visually impaired and those without disabilities, who rated ChatGPT-4s responses on relevance, conciseness, clarity, and usability using a 1-5 Likert scale. Results showed that ChatGPT-4 had 64.42% effectiveness in assisting with web accessibility, particularly in summarizing and clarifying content. However, issues such ashallucinations and false information were noted.This study underscores the promise of ChatGPT-4 in enhancing web accessibility and emphasizes the need for further refinement to ensure accuracy and reliability in real-world applications. / Tillgängligt innehåll på webben är en nödvändig del för att skapa ett internet som är användbart av alla, även personer med en funktionsnedsättning. Denna studie utforskar potentialen hos ChatGPT-4 som verktyg för att förbättra tillgänglighet på webben för synskade genom att utvärdera verktygets effektivitet att tolka och förmedla innehåll på webben som har tillgänglighetsproblem. Metodiken innebar att skapa webbsidor avsiktligen innehållandes tillgänglighetsbarriärer, skapa prompts för att simulera realtidsproblem, och att använda ChatGPT-4 som en lösning. Insamlingen av information innefattade data från både individer med och utan en synskada, där personerna rankade ChatGPT-4s svar på kriterierna relevans, kortfattadhet, tydlighet och användbarhet på en 1-5 Likert skala. Reultatet visade att ChatGPT-4 hade en effektitvet på 64,42% i att hjälpa med webbtillgänglighet, och särskilt effektiv i att summera och förklara innehåll. Dock så uppvisade verktyget problem såsom hallucinationer och falsk informarion. Denna studie visar prov på ChatGPT-4s potential i att förbättra tillgänglighet på webben, samt understryker att vidareutveckling behövs för att garantera korrekthet och tillförlitlighet i verkliga applikationer.
20

KERMIT: Knowledge Extractive and Reasoning Model usIng Transformers

Hameed, Abed Alkarim, Mäntyniemi, Kevin January 2024 (has links)
In the rapidly advancing field of artificial intelligence, Large Language Models (LLMs) like GPT-3, GPT-4, and Gemini have revolutionized sectors by automating complex tasks. Despite their advancements, LLMs and more noticeably smaller language models (SLMs) still face challenges, such as generating unfounded content "hallucinations." This project aims to enhance SLMs for broader accessibility without extensive computational infrastructure. By supervised fine-tuning of smaller models with new datasets, SQUAD-ei and SQUAD-GPT, the resulting model, KERMIT-7B, achieved superior performance in TYDIQA-GoldP, demonstrating improved information extraction while retaining generative quality. / Inom det snabbt växande området artificiell intelligens har stora språkmodeller (LLM) som GPT-3, GPT-4 och Gemini revolutionerat sektorer genom att automatisera komplexa uppgifter. Trots sina framsteg stårdessa modeller, framför allt mindre språkmodeller (SLMs) fortfarande inför utmaningar, till exempel attgenerera ogrundat innehåll "hallucinationer". Denna studie syftar till att förbättra SLMs för bredare till-gänglighet utan krävande infrastruktur. Genom supervised fine-tuning av mindre modeller med nya data-set, SQUAD-ei och SQUAD-GPT, uppnådde den resulterande modellen, KERMIT-7B, överlägsen pre-standa i TYDIQA-GoldP, vilket visar förbättrad informationsutvinning samtidigt som den generativa kva-liteten bibehålls.

Page generated in 0.0516 seconds