• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 69
  • 49
  • 24
  • 21
  • 19
  • 15
  • 12
  • 12
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

<>.

Tapken, Christian. January 2005 (has links) (PDF)
Heidelberg, Univ., Diss., 2005. / Computerdatei im Fernzugriff.
2

Mass functions and mass segregation in young starburst clusters

Stolte, Andrea. January 2003 (has links) (PDF)
Heidelberg, University, Diss., 2003.
3

Optical and near infrared studies of the photometric structure and starburst activity of blue compact dwarf galaxies

Noeske, Kai Gerhard. January 2003 (has links) (PDF)
Göttingen, University, Diss., 2003.
4

Theoretical models of galactic starbursts

Gray, M. D. January 1986 (has links)
No description available.
5

An automated polarimeter and its use in the study of active galaxies

Stockdale, D. P. January 1996 (has links)
In this thesis I present the design and development of an automated polarimeter for use in mapping the percentage levels and position angles of linearly polarized light from extended astronomical objects. The polarimeter is controlled from a personal computer that is running a UNIX operating system and controls not only the instrument, but the CCD camera as well. The second chapter of the thesis consists of a description of how the polarimeter works, the principles behind the optics, the mechanics and the electronics. The third chapter describes the software that controls the functional units within the polarimeter to the required accuracy demanded of a scientific application. The fourth and fifth chapters of the thesis address some of the scientific issues that the polarimeter has been used to clarify. There is a brief presentation of the phenomena of starburst galaxies and the generation of galactic-scale winds, often called superwinds. Polarization results and their interpretation for three starburst galaxies are presented.
6

The galactic starburst region NGC 3603 exciting new insights on the formation of high mass stars /

Nürnberger, Dieter E. A. Unknown Date (has links) (PDF)
University, Diss., 2004--Würzburg.
7

Cospatial Star Formation and Supermassive Black Hole Growth in z ∼ 3 Galaxies: Evidence for In Situ Co-evolution

Rujopakarn, W., Nyland, K., Rieke, G. H., Barro, G., Elbaz, D., Ivison, R. J., Jagannathan, P., Silverman, J. D., Smolčić, V., Wang, T. 07 February 2018 (has links)
We present a sub-kiloparsec localization of the sites of supermassive black hole (SMBH) growth in three active galactic nuclei (AGNs) at z similar to 3 in relation to the regions of intense star formation in their hosts. These AGNs are selected from Karl G. Jansky Very Large Array (VLA) and Atacama Large Millimeter/submillimeter Array (ALMA) observations in the Hubble Ultra-Deep Field and COSMOS, with the centimetric radio emission tracing both star formation and AGN, and the sub/millimeter emission by dust tracing nearly pure star formation. We require radio emission to be >= 5 x more luminous than the level associated with the sub/millimeter star formation to ensure that the radio emission is AGN-dominated, thereby allowing localization of the AGN and star formation independently. In all three galaxies, the AGNs are located within the compact regions of gas-rich, heavily obscured, intense nuclear star formation, with R-e = 0.4-1.1 kpc and average star formation rates of similar or equal to 100-1200 M(circle dot)yr(-1). If the current episode of star formation continues at such a rate over the stellar mass doubling time of their hosts, similar or equal to 0.2 Gyr, the newly formed stellar mass will be of the order of 10(11)M(circle dot). within the central kiloparsec region, concurrently and cospatially with significant growth of the SMBH. This is consistent with a picture of in situ galactic bulge and SMBH formation. This work demonstrates the unique complementarity of VLA and ALMA observations to unambiguously pinpoint the locations of AGNs and star formation down to similar or equal to 30 mas, corresponding to; 230 pc at z = 3.
8

The Galactic Starburst Region NGC 3603 : exciting new insights on the formation of high mass stars / Das Galaktische Sternentstehungsgebiet NGC 3603: Neue Einblicke in die Entstehung von massereichen Sternen

Nürnberger, Dieter January 2004 (has links) (PDF)
One of the most fundamental, yet still unsolved problems in star formation research is addressed by the question "How do high mass stars form?". While most details related to the formation and early evolution of low mass stars are quite well understood today, the basic processes leading to the formation of high mass stars still remain a mystery. There is no doubt that low mass stars like our Sun form via accretion of gas and dust from their natal environment. With respect to the formation of high mass stars theorists currently discuss two possible scenarios controversely: First, similar to stars of lower masses, high mass stars form by continuous (time variable) accretion of large amounts of gas and dust through their circumstellar envelopes and/or disks. Second, high mass stars form by repeated collisions (coalescence) of protostars of lower masses. Both scenarios bear difficulties which impose strong constrains on the final mass of the young star. To find evidences for or against one of these two theoretical models is a challenging task for observers. First, sites of high mass star formation are much more distant than the nearby sites of low mass star formation. Second, high mass stars form and evolve much faster than low mass star. In particular, they contract to main sequence, hydrogen burning temperatures and densities on time scales which are much shorter than typical accretion time scales. Third, as a consequence of the previous point, young high mass stars are usually deeply embedded in their natal environment throughout their (short) pre-main sequence phase. Therefore, high mass protostars are rare, difficult to find and difficult to study. In my thesis I undertake a novel approach to search for and to characterize high mass protostars, by looking into a region where young high mass stars form in the violent neighbourhood of a cluster of early type main sequence stars. The presence of already evolved O type stars provides a wealth of energetic photons and powerful stellar winds which evaporate and disperse the surrounding interstellar medium, thus "lifting the courtains" around nearby young stars at a relatively early evolutionary stage. Such premises are given in the Galactic starburst region NGC 3603. Nevertheless, a large observational effort with different telescopes and instruments -- in particular, taking advantage of the high angular resolution and high sensitivity of near and mid IR instruments available at ESO -- was necessary to achieve the goals of my study. After a basic introduction on the topic of (high mass) star formation in Chapter 1, a short overview of the investigated region NGC 3603 and its importance for both galactic and extragalactic star formation studies is given in Chapter 2. Then, in Chapter 3, I report on a comprehensive investigation of the distribution and kinematics of the molecular gas and dust associated with the NGC 3603 region. In Chapter 4 I thoroughly address the radial extent of the NGC 3603 OB cluster and the spatial distribution of the cluster members. Together with deep Ks band imaging data, a detailed survey of NGC 3603 at mid IR wavelengths allows to search the neighbourhood of the cold molecular gas and dust for sources with intrinsic mid IR excess (Chapter 5). In Chapter 6 I characterize the most prominent sources of NGC 3603 IRS 9 and show that these sources are bona-fide candidates for high mass protostars. Finally, a concise summary as well as an outlook on future prospects in high mass star formation research is given in Chapter 7. / Eines der wichtigsten, nach wie vor ungeloesten Probleme auf dem Forschungsgebiet der Sternentstehung kann durch die einfache Frage "Wie entstehen massereiche Sterne?" zum Ausdruck gebracht werden. Waehrend die Entstehung und fruehe Entwicklung massearmer Sternen bereits in vielen Details gut verstanden ist, sind die grundlegenden Prozesse waehrend der Entstehung massereicher Sterne noch ungeklaert. Es besteht kein Zweifel, dass massearme Sterne wie unsere Sonne durch Akkretion von Gas und Staub aus ihrer Geburtswolke hervorgehen. Seitens der theoretischen Astrophysik werden hinsichtlich der Entstehung massereicher Sterne zwei moegliche Szenarien kontrovers diskutiert. Folgt man dem ersten Modell, so entstehen massereiche Sterne aehnlich wie massearme Sterne, indem sie kontinuierlich (zeitlich variabel) grosse Mengen Gas und Staub ueber ihre zirkumstellaren Huellen und/oder Scheiben akkretieren. Demgegenueber erklaert das zweite Modell die Entstehung massereicher Sterne ueber wiederholt stattfindende Kollisionen von Protosternen geringerer Masse (Koaleszenz). In beide Szenarien begegnet man jedoch Schwierigkeiten physikalischer Natur, die der entgueltigen Masse eines jungen massereichen Sternes eine obere Grenze setzen. Argumente/Beweise fuer oder gegen eines dieser beiden konkurrierenden Modelle zu finden, stellt fuer die beobachtenden Astrophysiker eine grosse Herausforderung dar. Hierfuer gibt es mehrere Gruende: Erstens, die Entstehungsgebiete massereicher Sterne liegen in deutlich groesserer Entfernung als die relativ nahegelegenen Entstehungsgebiete massearmer Sterne. Zweitens, massereiche Sterne entstehen und entwickeln sich viel schneller als massearme Sterne. Insbesonders verlaeuft die Kontraktion zu Temperaturen und Dichten, die denen waehrend des Wasserstoffbrennens auf der Hauptreihe entsprechen, auf Zeitskalen, die deutlich kuerzer sind als typische Zeitskalen fuer die Akkretion von zirkumstellarer Materie. Drittens, und unmittelbare Konsequenz des vorherigen Punktes, junge massereiche Sterne sind gewoehnlich waehrend ihrer gesamten (relativ kurzen) Vorhauptreihenentwicklung tief eingebettet in jene Wolke aus molekularem Gas und Staub, aus der sie selbst entstanden sind. Massereiche Protosterne sind daher sehr selten, schwierig zu entdecken und schwierig zu studieren. In meiner Doktorarbeit unternehme ich einen neuartigen Versuch, massereiche Protosterne zu suchen und zu charakterisieren, indem ich die turbulente Umgebung ein Haufens von fruehen Hauptreihensternen untersuche. Die Praesenz von bereits entwickelten Sternen des Spektraltyps O fuehrt zur Produktion energiereicher Photonen und kraeftiger Sternwinde, welche die umgebende interstellare Materie verdampfen und zerstreuen. Dadurch kann der Blick auf benachbarte junge Sterne zu einem relativ fruehen Zeitpunkt ihrer Entstehung freigegeben werden. Derartige Voraussetzungen finden sich in der galaktischen Starburst-Region NGC 3603. Nichtsdestoweniger bedarf es jedoch eines gewaltigen beobachtungstechnischen Aufwandes mit mehreren Teleskopen und Instrumenten -- insbesondere sind die hohe raeumliche Aufloesung sowie die exzellente Sensitivitaet der fuer die Beobachtungen im nahen und mittleren Infrarot benutzten ESO-Instrumente von entscheidender Bedeutung --, um die gesteckten Ziele meiner Studie zu erreichen. Nach einer grundlegenden Einfuehrung in die Thematik der Entstehung von (massereichen) Sternen in Kapitel 1 wird ein kurzer Ueberblick gegeben ueber die untersuchte Region NGC 3603 sowie ueber ihre Bedeutung fuer Studien zur Sternentstehung sowohl innerhalb als auch ausserhalb unserer Galaxie (Kapitel 2). Anschliessend berichte ich in Kapitel 3 ueber die Ergebnisse einer umfangreichen Untersuchung zur Verteilung und Kinematik des mit der NGC 3603-Region assoziierten molekularen Gases und Staubes. In Kapitel 4 untersuche ich die radiale Ausdehnung des zentralen OB-Sternhaufens und die raeumliche Verteilung seiner Mitgliedssterne. Zusammen mit tiefen Aufnahmen im Ks-Band erlauben detaillierte Beobachtungen bei Wellenlaengen des mittleren Infrarot die Identifizierung von intrinsisch stark geroeteten Quellen in der Nachbarschaft von kaltem, molekularem Gas und Staub (Kapitel 5). In Kapitel 6 werden dann die hellsten dieser Objekte, die Quellen der NGC 3603 IRS 9- Region, genauestens charakterisiert. Es wird gezeigt, dass diese Quellen geeignete Kandidaten fuer massereiche Protosterne darstellen. Zum Schluss fasse ich die erzielten Ergebnisse in Kapitel 7 zusammen und gebe einen Ausblick auf Schwerpunkte zukuenftiger Studien zur Entstehung massereicher Sterne.
9

Lya emission galaxies in the FORS deep field

Tapken, Christian. Unknown Date (has links) (PDF)
University, Diss., 2005--Heidelberg.
10

A COMPARATIVE STUDY of KNOTS of STAR FORMATION in INTERACTING VERSUS SPIRAL GALAXIES

Smith, Beverly J., Zaragoza-Cardiel, Javier, Struck, Curtis, Olmsted, Susan, Jones, Keith 01 March 2016 (has links)
Interacting galaxies are known to have higher global rates of star formation on average than normal galaxies, relative to their stellar masses. Using UV and IR photometry combined with new and published Hα images, we have compared the star formation rates (SFRs) of ∼700 star forming complexes in 46 nearby interacting galaxy pairs with those of regions in 39 normal spiral galaxies. The interacting galaxies have proportionally more regions with high SFRs than the spirals. The most extreme regions in the interacting systems lie at the intersections of spiral/tidal structures, where gas is expected to pile up and trigger star formation. Published Hubble Space Telescope images show unusually large and luminous star clusters in the highest luminosity regions. The SFRs of the clumps correlate with measures of the dust attenuation, consistent with the idea that regions with more interstellar gas have more star formation. For the clumps with the highest SFRs, the apparent dust attenuation is consistent with the Calzetti starburst dust attenuation law. This suggests that the high luminosity regions are dominated by a central group of young stars surrounded by a shell of clumpy interstellar gas. In contrast, the lower luminosity clumps are bright in the UV relative to Hα, suggesting either a high differential attenuation between the ionized gas and the stars, or a post-starburst population bright in the UV but faded in Hα. The fraction of the global light of the galaxies in the clumps is higher on average for the interacting galaxies than for the spirals. Thus either star formation in interacting galaxies is "clumpier" on average, or the star forming regions in interacting galaxies are more luminous, dustier, or younger on average.

Page generated in 0.0521 seconds