Spelling suggestions: "subject:"stationnarité"" "subject:"stationarity""
1 |
Quelques propriétés asymptotiques en estimation non paramétrique de fonctionnelles de processus stationnaires en temps continu / Some asymptotic properties for nonparametric estimation of functional of stationary continuous time processesDidi, Sultana 15 September 2014 (has links)
Les travaux de cette thèse portent sur les problèmes d’estimation non paramétrique des fonctions de densité, de régression et du mode conditionnel associés à des processus stationnaires à temps continu. La motivation essentielle est d’établir des propriétés asymptotiques tout en considérant un cadre de dépendance des données assez général qui puisse être facilement utilisé en pratique. Cette contribution se compose de quatre parties. La première partie est consacrée à l’état de l’art relatif à la problématique qui situe bien notre contribution dans la littérature. Dans le deuxième partie, nous nous intéressons à l’estimation, par la méthode du noyau, de la densité pour laquelle nous établissons des résultats de convergence presque sûre, ponctuelle et uniforme, avec des vitesses de convergence. Dans les parties suivantes, les données sont supposées stationnaires et ergodiques. Dans la troisième partie, des propriétés asymptotiques similaires sont établies pour l’estimation à noyau de la fonction de régression. Dans le même esprit, nous étudions dans la quatrième partie, l’estimation à noyau de la fonction mode conditionnel pour lequel nous établissons des propriétés de consistance avec des vitesses de convergence. L’estimateur proposé ici se positionne comme une alternative à celui de la fonction de régression dans les problèmes de prévision. / The work of this thesis focuses upon some nonparametric estimation problems. More precisely, considering kernel estimators of the density, the regression and the conditional mode functions associated to a stationary continuous-time process, we aim at establishing some asymptotic properties while taking a sufficiently general dependency framework for the data as to be easily used in practice. The present manuscript includes four parts. The first one gives the state of the art related to the field of our concern and identifies well our contribution as compared to the existing results in the literature. In the second part, we focus on the kernel density estimation. In a rather general dependency setting, where we use a martingale difference device and a technique based on a sequence of projections on -fields, we establish the almost sure pointwise and uniform consistencies with rates of our estimate. In the third part, similar asymptotic properties are established for the kernel estimator of the regression function. Here and below, the processes are assumed to be ergodic In the same spirit, we study in the fourth part, the kernel estimate of conditional mode function for which we establish consistency properties with rates of convergence. The proposed estimator may be viewed as an alternative in the prediction issues to the usual regression function.
|
2 |
Analyse des processus longue mémoire stationnaires et non-stationnaires : estimations, applications et prévisionsLu, Zhiping 02 June 2009 (has links) (PDF)
Dans cette thèse, on considère deux types de processus longues mémoires : les processus stationnaires et non-stationnaires. Nous nous consacrons à l'étude de leurs propriétés statistiques, les méthodes d'estimation, les méthodes de prévision et les tests statistiques. Les processus longue mémoire stationaires ont été largement étudiés au cours des dernières décennies. Il a été démontré que des processus longue mémoire ont des propriétés d'autosimilarité, qui sont importants pour l'estimation des paramètres. Nous passons en revue les propriétés d'auto-similairité des processus longue mémoire en temps continu et en temps discret. Nous proposons deux propositions montrant que les processus longue mémoire sont asymptotiquement auto-similaires du deuxième ordre, alors que processus courte mémoire ne sont pas asymptotiquement auto-similaires du deuxième ordre. Ensuite, nous étudions l'auto-similairité des processus longue mémoire spécifiques tels que les processus GARMA à k facteurs et les processus GIGARCH à k facteurs. Nous avons également étudié les propriétés d'auto-similarités des modèles heteroscedastiques et des processus avec des sauts. Nous faisons une revue des méthodes d'estimation des paramètres des processus longue mémoire, par méthodes paramétriques (par exemple, l'estimation par maximum de vraisemblance et estimation par pseudo-maximum de vraisemblance) et les méthodes semiparamétriques (par exemple, la méthode de GPH, la méthode de Whittle, la méthode de Robinson). Les comportements de consistance et de normalité asymptotique sont également étudiés pour ces estimateurs. Le test sur l'ordre fractionnaire intégré de la racine unité saisonnière et non-saisonnière des processus longue mémoire stationnaires est très important pour la modélisation des series économiques et financières. Le test de Robinson (1994) est largement utilisé et appliqué aux divers modèles longues mémoires bien connus. A partir de méthode de Monte Carlo, nous étudions et comparons les performances de ce test en utilisant plusieurs tailles d'échantillons. Ce travail est important pour les praticiens qui veulent utiliser le test de Robinson. Dans la pratique, lorsqu'on traite des données financières et économiques, la saisonnalité et la dépendance qui évolvent avec le temps peuvent souvent être observées. Ainsi une sorte de non-stationnarité existe dans les données financières. Afin de prendre en compte ce genre de phénomènes, nous passons en revue les processus non-stationnaires et nous proposons une nouvelle classe de processus stochastiques: les processus de Gegenbauer à k facteurs localement stationnaire. Nous proposons une procédure d'estimation de la fonction de paramètres en utilisant la transformation discrète en paquets d'ondelettes (DWPT). La robustesse de l'algorithme est étudiée par simulations. Nous proposons également des méthodes de prévisions pour cette nouvelle classe de processus non-stationnaire à long mémoire. Nous dennons des applications sur le terme de la correction d'erreurs de l'analyse cointégration fractionnaire de l'index Nikkei Stock Average 225 et nous étudions les prix mondiaux du pétrole brut.
|
3 |
Signal Processing on Graphs - Contributions to an Emerging Field / Traitement du signal sur graphes - Contributions à un domaine émergentGirault, Benjamin 01 December 2015 (has links)
Ce manuscrit introduit dans une première partie le domaine du traitement du signal sur graphe en commençant par poser les bases d'algèbre linéaire et de théorie spectrale des graphes. Nous définissons ensuite le traitement du signal sur graphe et donnons des intuitions sur ses forces et faiblesses actuelles comparativement au traitement du signal classique. En seconde partie, nous introduisons nos contributions au domaine. Le chapitre 4 cible plus particulièrement l'étude de la structure d'un graphe par l'analyse des signaux temporels via une transformation graphe vers série temporelle. Ce faisant, nous exploitons une approche unifiée d'apprentissage semi-supervisé sur graphe dédiée à la classification pour obtenir une série temporelle lisse. Enfin, nous montrons que cette approche s'apparente à du lissage de signaux sur graphe. Le chapitre 5 de cette partie introduit un nouvel opérateur de translation sur graphe définit par analogie avec l'opérateur classique de translation en temps et vérifiant la propriété clé d'isométrie. Cet opérateur est comparé aux deux opérateurs de la littérature et son action est décrite empiriquement sur quelques graphes clés. Le chapitre 6 décrit l'utilisation de l'opérateur ci-dessus pour définir la notion de signal stationnaire sur graphe. Après avoir étudié la caractérisation spectrale de tels signaux, nous donnons plusieurs outils essentiels pour étudier et tester cette propriété sur des signaux réels. Le dernier chapitre s'attache à décrire la boite à outils \matlab développée et utilisée tout au long de cette thèse. / This dissertation introduces in its first part the field of signal processing on graphs. We start by reminding the required elements from linear algebra and spectral graph theory. Then, we define signal processing on graphs and give intuitions on its strengths and weaknesses compared to classical signal processing. In the second part, we introduce our contributions to the field. Chapter 4 aims at the study of structural properties of graphs using classical signal processing through a transformation from graphs to time series. Doing so, we take advantage of a unified method of semi-supervised learning on graphs dedicated to classification to obtain a smooth time series. Finally, we show that we can recognize in our method a smoothing operator on graph signals. Chapter 5 introduces a new translation operator on graphs defined by analogy to the classical time shift operator and verifying the key property of isometry. Our operator is compared to the two operators of the literature and its action is empirically described on several graphs. Chapter 6 describes the use of the operator above to define stationary graph signals. After giving a spectral characterization of these graph signals, we give a method to study and test stationarity on real graph signals. The closing chapter shows the strength of the matlab toolbox developed and used during the course of this PhD.
|
4 |
Choix optimal du paramètre de lissage dans l'estimation non paramétrique de la fonction de densité pour des processus stationnaires à temps continu / Optimal choice of smoothing parameter in non parametric density estimation for continuous time stationary processesEl Heda, Khadijetou 25 October 2018 (has links)
Les travaux de cette thèse portent sur le choix du paramètre de lissage dans le problème de l'estimation non paramétrique de la fonction de densité associée à des processus stationnaires ergodiques à temps continus. La précision de cette estimation dépend du choix de ce paramètre. La motivation essentielle est de construire une procédure de sélection automatique de la fenêtre et d'établir des propriétés asymptotiques de cette dernière en considérant un cadre de dépendance des données assez général qui puisse être facilement utilisé en pratique. Cette contribution se compose de trois parties. La première partie est consacrée à l'état de l'art relatif à la problématique qui situe bien notre contribution dans la littérature. Dans la deuxième partie, nous construisons une méthode de sélection automatique du paramètre de lissage liée à l'estimation de la densité par la méthode du noyau. Ce choix issu de la méthode de la validation croisée est asymptotiquement optimal. Dans la troisième partie, nous établissons des propriétés asymptotiques, de la fenêtre issue de la méthode de la validation croisée, données par des résultats de convergence presque sûre. / The work this thesis focuses on the choice of the smoothing parameter in the context of non-parametric estimation of the density function for stationary ergodic continuous time processes. The accuracy of the estimation depends greatly on the choice of this parameter. The main goal of this work is to build an automatic window selection procedure and establish asymptotic properties while considering a general dependency framework that can be easily used in practice. The manuscript is divided into three parts. The first part reviews the literature on the subject, set the state of the art and discusses our contribution in within. In the second part, we design an automatical method for selecting the smoothing parameter when the density is estimated by the Kernel method. This choice stemming from the cross-validation method is asymptotically optimal. In the third part, we establish an asymptotic properties pertaining to consistency with rate for the resulting estimate of the window-width.
|
5 |
Une mesure de non-stationnarité générale : Application en traitement d'images et du signaux biomédicaux / A general non-stationarity measure : Application to biomedical image and signal processingXu, Yanli 04 October 2013 (has links)
La variation des intensités est souvent exploitée comme une propriété importante du signal ou de l’image par les algorithmes de traitement. La grandeur permettant de représenter et de quantifier cette variation d’intensité est appelée une « mesure de changement », qui est couramment employée dans les méthodes de détection de ruptures d’un signal, dans la détection des contours d’une image, dans les modèles de segmentation basés sur les contours, et dans des méthodes de lissage d’images avec préservation de discontinuités. Dans le traitement des images et signaux biomédicaux, les mesures de changement existantes fournissent des résultats peu précis lorsque le signal ou l’image présentent un fort niveau de bruit ou un fort caractère aléatoire, ce qui conduit à des artefacts indésirables dans le résultat des méthodes basées sur la mesure de changement. D’autre part, de nouvelles techniques d'imagerie médicale produisent de nouveaux types de données dites à valeurs multiples, qui nécessitent le développement de mesures de changement adaptées. Mesurer le changement dans des données de tenseur pose alors de nouveaux problèmes. Dans ce contexte, une mesure de changement, appelée « mesure de non-stationnarité (NSM) », est améliorée et étendue pour permettre de mesurer la non-stationnarité de signaux multidimensionnels quelconques (scalaire, vectoriel, tensoriel) par rapport à un paramètre statistique, et en fait ainsi une mesure générique et robuste. Une méthode de détection de changements basée sur la NSM et une méthode de détection de contours basée sur la NSM sont respectivement proposées et appliquées aux signaux ECG et EEG, ainsi qu’a des images cardiaques pondérées en diffusion (DW). Les résultats expérimentaux montrent que les méthodes de détection basées sur la NSM permettent de fournir la position précise des points de changement et des contours des structures tout en réduisant efficacement les fausses détections. Un modèle de contour actif géométrique basé sur la NSM (NSM-GAC) est proposé et appliqué pour segmenter des images échographiques de la carotide. Les résultats de segmentation montrent que le modèle NSM-GAC permet d’obtenir de meilleurs résultats comparativement aux outils existants avec moins d'itérations et de temps de calcul, et de réduire les faux contours et les ponts. Enfin, et plus important encore, une nouvelle approche de lissage préservant les caractéristiques locales, appelée filtrage adaptatif de non-stationnarité (NAF), est proposée et appliquée pour améliorer les images DW cardiaques. Les résultats expérimentaux montrent que la méthode proposée peut atteindre un meilleur compromis entre le lissage des régions homogènes et la préservation des caractéristiques désirées telles que les bords ou frontières, ce qui conduit à des champs de tenseurs plus homogènes et par conséquent à des fibres cardiaques reconstruites plus cohérentes. / The intensity variation is often used in signal or image processing algorithms after being quantified by a measurement method. The method for measuring and quantifying the intensity variation is called a « change measure », which is commonly used in methods for signal change detection, image edge detection, edge-based segmentation models, feature-preserving smoothing, etc. In these methods, the « change measure » plays such an important role that their performances are greatly affected by the result of the measurement of changes. The existing « change measures » may provide inaccurate information on changes, while processing biomedical images or signals, due to the high noise level or the strong randomness of the signals. This leads to various undesirable phenomena in the results of such methods. On the other hand, new medical imaging techniques bring out new data types and require new change measures. How to robustly measure changes in theos tensor-valued data becomes a new problem in image and signal processing. In this context, a « change measure », called the Non-Stationarity Measure (NSM), is improved and extended to become a general and robust « change measure » able to quantify changes existing in multidimensional data of different types, regarding different statistical parameters. A NSM-based change detection method and a NSM-based edge detection method are proposed and respectively applied to detect changes in ECG and EEG signals, and to detect edges in the cardiac diffusion weighted (DW) images. Experimental results show that the NSM-based detection methods can provide more accurate positions of change points and edges and can effectively reduce false detections. A NSM-based geometric active contour (NSM-GAC) model is proposed and applied to segment the ultrasound images of the carotid. Experimental results show that the NSM-GAC model provides better segmentation results with less iterations that comparative methods and can reduce false contours and leakages. Last and more important, a new feature-preserving smoothing approach called « Nonstationarity adaptive filtering (NAF) » is proposed and applied to enhance human cardiac DW images. Experimental results show that the proposed method achieves a better compromise between the smoothness of the homogeneous regions and the preservation of desirable features such as boundaries, thus leading to homogeneously consistent tensor fields and consequently a more reconstruction of the coherent fibers.
|
Page generated in 0.1118 seconds