• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

非平穩性時間數列預測 / Forecasting for nonstationary time series a neural networks approach

于健, YU, JIAN Unknown Date (has links)
Conventional time series analysis depends heavily on the twin assumptions of linearity and stationarity. However; there are certain cases where sampled data tend to violate the assumptions. In this paper, we use neural networks technology to explore the situation when the assumptions of linearity and stationarity are failed. At the end of the paper, we discuss an illustrative example about the annual expenditures of government and science-education-culture of R.O.C.

Page generated in 0.1377 seconds