1 |
Deformation Micro-mechanisms of Simple and Complex Concentrated FCC AlloysKomarasamy, Mageshwari 12 1900 (has links)
The principal objective of this work was to elucidate the effect of microstructural features on the intrinsic dislocation mechanisms in two FCC alloys. First alloy Al0.1CoCrFeNi was from a new class of material known as complex concentrated alloys, particularly high entropy alloys (HEA). The second was a conventional Al-Mg-Sc alloy in ultrafine-grained (UFG) condition. In the case of HEA, the lattice possess significant lattice strain due to the atomic size variation and cohesive energy differences. Moreover, both the lattice friction stress and the Peierls barrier height are significantly larger than the conventional FCC metals and alloys. The experimental evidences, so far, provide a distinctive identity to the nature and motion of dislocations in FCC HEA as compared to the conventional FCC metals and alloys. Hence, the thermally activated dislocation mechanisms and kinetics in HEA has been studied in detail. To achieve the aim of examining the dislocation kinetics, transient tests, both strain rate jump tests and stress relaxation tests, were conducted. Anomalous behavior in dislocation kinetics was observed. Surprisingly, a large rate sensitivity of the flow stress and low activation volume of dislocations were observed, which are unparalleled as compared to conventional CG FCC metals and alloys. The observed trend has been explained in terms of the lattice distortion and dislocation energy framework. As opposed to the constant dislocation line energy and Peierls potential energy (amplitude, ΔE) in conventional metals and alloys, both line energy and Peierls potential undergo continuous variation in the case of HEA. These energy fluctuations have greatly affected the dislocation mobility and can be distinctly noted from the activation volume of dislocations. The proposed hypothesis was tested by varying the grain size and also the test temperature. Activation volume of dislocations was a strong function of temperature and increased with temperature. And the reduction in grain size did not affect the dislocation mechanisms and kinetics. This further bolstered the hypothesis. The second part deals with deformation characteristics of Al-Mg-Sc alloy. The microstructure obtained from the severe plastic deformation (SPD) techniques differ in dislocation density, grain/cell size, and in the grain boundary character distribution. Therefore, it is vital to understand the deformation behavior of the UFG materials produced by various SPD techniques, as the microstructural features basically control the deformation mechanisms. In this study, a detailed analysis was made to understand the deformation mechanisms operative in various regimes of a stress-strain in UFG Al-Mg-Sc alloy produced via friction stir processing. The stress-strain curves exhibited serrations from the onset of yielding to the point of sample failure. The serration amplitude and frequency was higher in UFG material as compared to CG material. Furthermore, the microstructural features that result in the serrated flow were investigated along with the avalanche characteristics. The presence of both ultrafine grains and Al3Sc precipitates were the necessary conditions to reach the critical stress required to push the grain boundary into a critical state to set off an avalanche. The microstructural conditions that did not satisfy both the requirements did not exhibit deep serrations.
|
Page generated in 0.1183 seconds