• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

State of the art digital on-board-electronics vs. potentially disruptive control architectures for hydraulic valves

Richartz, Achim 25 June 2020 (has links)
Currently discussed trends and new technologies regarding cloud or edge computing imply that even most recent designs and functionalities of digital on-board-control electronics may be outdated and eventually will totally disappear. Additionally, those new technologies attract potential users by promises like new use cases e.g. predictive maintenance or a simplified architecture and reduced installation efforts. On the other hand, automation levels and subsequent requirements are often mixed up or discussed too generally. Nevertheless, what is the rue situation today and in the upcoming years? This paper elaborates the potentials of both approaches – state of the art on-board-control electronics and potentially disruptive control architectures for hydraulic valves in order to take the right decision and reflect the pros and cons for each topology by: a) Architecture of automation: In Terms of strongly hierarchical or multidimensional connected systems. b) Requirement of installation: By reflecting the dedicated ecosystems, on levels like plant, machine, subsystems. c) Maturity of technology: Looking on the user’s perspective. d) Safety and security: From legal and conformity aspects. e) Performance needs by specific task: In comparing standard to demanding real life applications.

Page generated in 0.0933 seconds