• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inventory management and financing decisions

Wu, Qi, active 2013 19 December 2013 (has links)
Globalization and increased product variety have impacted the uncertainty in demand and supply. The recent financial instability adds another layer of uncertainty regarding financing and investment. The changes, while gradual, have accumulated over time and posed enormous difficulties in planning procurement. This thesis focuses on inventory procurement strategies that help firms tackle challenges due to uncertainties in the demand/supply and financial concerns. The first part is on employing dynamic inventory procurement strategies to achieve cost efficiency and tackle the uncertainties in demand and supply. The second and third parts focus on the interaction between Finance and Operations in both its analytic aspects and empirical aspects. A synopsis of the three parts of the thesis follows. Part 1: “Inventory Management and Stochastic Lead Time” This chapter analyzes a continuous time back-ordered inventory system with stochastic demand and stochastic delivery lags for placed orders. This problem in general has an infinite dimensional state space and is hence intractable. We first obtain the set of minimal conditions for reducing such a system’s state space to one-dimension and show how this reduction is done. Next, by modeling demand as a diffusion process, we reformulate the inventory control problem as an impulse control problem. We simplify the impulse control problem to a Quasi-Variation Inequality (QVI). Based on the QVI formulation, we obtain the optimality of the (s, S) policy and the limiting distribution of the inventory level. We also obtain the long run average cost of such an inventory system. Finally, we provide a method to solve the QVI formulation. Using a set of computational experiments, we show that significant losses are incurred in approximating a stochastic lead time system with a fixed lead time system, thereby highlighting the need for such stochastic lead time models. We also provide insights into the dependence of this value loss on various problem parameters. Part 2: “Inventory Financing and Trade Credit” In this chapter, we study the inventory performance of publicly listed retailers between 1980 and 2010 based on a panel dataset from COMPUSTAT, CRSP, I/B/E/S and a hand-collected dataset on bankruptcy. We quantify the effect of a carefully-defined financial holding cost on inventory decisions, after controlling for operational factors and considering access to trade credit. This finding provides empirical evidence of the failure of the Modigliani-Miller Theorem in the inventory management context. We are also able to infer several unobservable costs based on historical inventory decisions. For example, the average cost of trade credit is estimated to be about 20% per year, which matches the typical trade credit terms in the United States. We find that the cost of trade credit computed has a strong connection to inventory per- formance. Our findings are robust to alternative econometric specifications, alternative measures of variables and model estimates for subsets of data. Part 3: “Joint Inventory and Cash Management Decisions” In this chapter, we address this question by considering a general con- tinuous time model of a dynamic inventory system that incurs costs in both managing the inventory and managing the cash flow. To support its inventory and operational cost, this system has access to both the financial market and trade credit from suppliers. We show how the inventory procurement decision and financing decision are made jointly. Specifically, we show that, with friction of financing, not only does the Modigliani-Miller Theorem not hold but also the two decisions interact in a dynamic and complex manner. We are also able to show how the value of the inventory system can be improved by using trade credit. / text
2

Modelagem matemática do efeito chicote em cadeias de abastecimento / Mathematical modeling of the Bullwhip Effect in supply chains

Fioriolli, Jose Carlos January 2007 (has links)
O aumento da variabilidade da demanda ao longo de uma cadeia de abastecimento é conhecido como Efeito Chicote (EC). A modelagem deste fenômeno é fundamental para a quantificação de sua intensidade, ajudando a reduzir seus impactos negativos sobre o nível de serviço e sobre os estoques em uma cadeia de abastecimento. Esta tese apresenta uma proposta de modelagem do EC que tem por objetivo aumentar a precisão na quantificação deste fenômeno em ambientes com demanda e lead time estocásticos. O novo modelo considera dois elementos que não estão presentes nos principais modelos disponíveis na literatura: a variabilidade no lead time de entrega de pedidos e a incorporação de um ajuste para contemplar uma política adequada de tratamento dos excessos de estoque. Além disso, define de modo mais preciso o papel do coeficiente de variação da demanda na quantificação do EC. A utilização do modelo proposto aumenta a eficiência da gestão de cadeias de abastecimento ao contribuir para atenuar a propagação do EC, elevar o nível de serviço e reduzir os níveis local e global dos estoques. Neste documento, os principais modelos de quantificação do EC são apresentados e analisados, com destaque para os trabalhos de Lee et al. (1997b), Chen et al. (2000), Fransoo e Wouters (2000) e Warburton (2004); nessa análise foram identificadas várias deficiências, capazes de produzir fortes distorções no processo de quantificação do EC. O modelo proposto supre integralmente estas deficiências e apresenta elementos que indicam que a intensidade e o comportamento estocástico e serial do EC só podem ser adequadamente modelados se a variabilidade do lead time for considerada e se os excessos de estoque forem utilizados no cálculo do tamanho dos pedidos. O novo modelo, além de contribuir para o entendimento da dinâmica do EC e para a ampliação do respectivo campo de discussão, representa adequadamente a complexidade das relações entre as variáveis associadas ao EC, o que lhe confere alta capacidade preditiva. Complementarmente, demonstra-se que o modelo de Chen et al. (2000) constitui um caso particular do modelo proposto. / The increase in demand variability as information flows from customers to manufacturers in a supply chain is known as the Bullwhip Effect (BE). Modeling this phenomenon is fundamental in measuring its intensity, aiming at reducing its negative impacts on both service and inventory levels in the supply chain. In this dissertation we propose a new, more precise mathematical model for quantifying the BE in systems with stochastic demand and lead time. The new model takes into account the lead time variability and is adjusted to a more realistic treatment of negative order quantities that may arise in some inventory cycles, two elements not present in the main available models in the literature. In addition, the model enables a more precise assessment of the role that the demand coefficient of variation plays in the quantification of the BE. The use of the proposed model enables an improved management of the supply chain by attenuating the propagation of the BE, increasing the service level and reducing inventory levels both locally and globally. In this dissertation, the main models for quantifying the BE are presented and analyzed, with emphasis in the works of Lee et al. (1997b), Chen et al. (2000), Fransoo and Wouters (2000) and Warburton (2004); in that analysis were identified several deficiencies, able to generate severe distortions in the quantification of the BE. The proposed model fully overcomes these deficiencies and presents elements that indicate that the intensity and stochastical and serial behavior of the BE can only be appropriately modeled if the lead time variability is considered and if inventory excesses are used in the order size calculation. The new model, in addition to contribute to the understanding of the BE dynamics enriching its analysis, represents appropriately the complexity of relationships among variables associated with the BE, contributing to its high predictive capacity. Finally, it is demonstrated that the model in Chen et al. (2000) represents a special case of the proposed model.
3

Modelagem matemática do efeito chicote em cadeias de abastecimento / Mathematical modeling of the Bullwhip Effect in supply chains

Fioriolli, Jose Carlos January 2007 (has links)
O aumento da variabilidade da demanda ao longo de uma cadeia de abastecimento é conhecido como Efeito Chicote (EC). A modelagem deste fenômeno é fundamental para a quantificação de sua intensidade, ajudando a reduzir seus impactos negativos sobre o nível de serviço e sobre os estoques em uma cadeia de abastecimento. Esta tese apresenta uma proposta de modelagem do EC que tem por objetivo aumentar a precisão na quantificação deste fenômeno em ambientes com demanda e lead time estocásticos. O novo modelo considera dois elementos que não estão presentes nos principais modelos disponíveis na literatura: a variabilidade no lead time de entrega de pedidos e a incorporação de um ajuste para contemplar uma política adequada de tratamento dos excessos de estoque. Além disso, define de modo mais preciso o papel do coeficiente de variação da demanda na quantificação do EC. A utilização do modelo proposto aumenta a eficiência da gestão de cadeias de abastecimento ao contribuir para atenuar a propagação do EC, elevar o nível de serviço e reduzir os níveis local e global dos estoques. Neste documento, os principais modelos de quantificação do EC são apresentados e analisados, com destaque para os trabalhos de Lee et al. (1997b), Chen et al. (2000), Fransoo e Wouters (2000) e Warburton (2004); nessa análise foram identificadas várias deficiências, capazes de produzir fortes distorções no processo de quantificação do EC. O modelo proposto supre integralmente estas deficiências e apresenta elementos que indicam que a intensidade e o comportamento estocástico e serial do EC só podem ser adequadamente modelados se a variabilidade do lead time for considerada e se os excessos de estoque forem utilizados no cálculo do tamanho dos pedidos. O novo modelo, além de contribuir para o entendimento da dinâmica do EC e para a ampliação do respectivo campo de discussão, representa adequadamente a complexidade das relações entre as variáveis associadas ao EC, o que lhe confere alta capacidade preditiva. Complementarmente, demonstra-se que o modelo de Chen et al. (2000) constitui um caso particular do modelo proposto. / The increase in demand variability as information flows from customers to manufacturers in a supply chain is known as the Bullwhip Effect (BE). Modeling this phenomenon is fundamental in measuring its intensity, aiming at reducing its negative impacts on both service and inventory levels in the supply chain. In this dissertation we propose a new, more precise mathematical model for quantifying the BE in systems with stochastic demand and lead time. The new model takes into account the lead time variability and is adjusted to a more realistic treatment of negative order quantities that may arise in some inventory cycles, two elements not present in the main available models in the literature. In addition, the model enables a more precise assessment of the role that the demand coefficient of variation plays in the quantification of the BE. The use of the proposed model enables an improved management of the supply chain by attenuating the propagation of the BE, increasing the service level and reducing inventory levels both locally and globally. In this dissertation, the main models for quantifying the BE are presented and analyzed, with emphasis in the works of Lee et al. (1997b), Chen et al. (2000), Fransoo and Wouters (2000) and Warburton (2004); in that analysis were identified several deficiencies, able to generate severe distortions in the quantification of the BE. The proposed model fully overcomes these deficiencies and presents elements that indicate that the intensity and stochastical and serial behavior of the BE can only be appropriately modeled if the lead time variability is considered and if inventory excesses are used in the order size calculation. The new model, in addition to contribute to the understanding of the BE dynamics enriching its analysis, represents appropriately the complexity of relationships among variables associated with the BE, contributing to its high predictive capacity. Finally, it is demonstrated that the model in Chen et al. (2000) represents a special case of the proposed model.
4

Modelagem matemática do efeito chicote em cadeias de abastecimento / Mathematical modeling of the Bullwhip Effect in supply chains

Fioriolli, Jose Carlos January 2007 (has links)
O aumento da variabilidade da demanda ao longo de uma cadeia de abastecimento é conhecido como Efeito Chicote (EC). A modelagem deste fenômeno é fundamental para a quantificação de sua intensidade, ajudando a reduzir seus impactos negativos sobre o nível de serviço e sobre os estoques em uma cadeia de abastecimento. Esta tese apresenta uma proposta de modelagem do EC que tem por objetivo aumentar a precisão na quantificação deste fenômeno em ambientes com demanda e lead time estocásticos. O novo modelo considera dois elementos que não estão presentes nos principais modelos disponíveis na literatura: a variabilidade no lead time de entrega de pedidos e a incorporação de um ajuste para contemplar uma política adequada de tratamento dos excessos de estoque. Além disso, define de modo mais preciso o papel do coeficiente de variação da demanda na quantificação do EC. A utilização do modelo proposto aumenta a eficiência da gestão de cadeias de abastecimento ao contribuir para atenuar a propagação do EC, elevar o nível de serviço e reduzir os níveis local e global dos estoques. Neste documento, os principais modelos de quantificação do EC são apresentados e analisados, com destaque para os trabalhos de Lee et al. (1997b), Chen et al. (2000), Fransoo e Wouters (2000) e Warburton (2004); nessa análise foram identificadas várias deficiências, capazes de produzir fortes distorções no processo de quantificação do EC. O modelo proposto supre integralmente estas deficiências e apresenta elementos que indicam que a intensidade e o comportamento estocástico e serial do EC só podem ser adequadamente modelados se a variabilidade do lead time for considerada e se os excessos de estoque forem utilizados no cálculo do tamanho dos pedidos. O novo modelo, além de contribuir para o entendimento da dinâmica do EC e para a ampliação do respectivo campo de discussão, representa adequadamente a complexidade das relações entre as variáveis associadas ao EC, o que lhe confere alta capacidade preditiva. Complementarmente, demonstra-se que o modelo de Chen et al. (2000) constitui um caso particular do modelo proposto. / The increase in demand variability as information flows from customers to manufacturers in a supply chain is known as the Bullwhip Effect (BE). Modeling this phenomenon is fundamental in measuring its intensity, aiming at reducing its negative impacts on both service and inventory levels in the supply chain. In this dissertation we propose a new, more precise mathematical model for quantifying the BE in systems with stochastic demand and lead time. The new model takes into account the lead time variability and is adjusted to a more realistic treatment of negative order quantities that may arise in some inventory cycles, two elements not present in the main available models in the literature. In addition, the model enables a more precise assessment of the role that the demand coefficient of variation plays in the quantification of the BE. The use of the proposed model enables an improved management of the supply chain by attenuating the propagation of the BE, increasing the service level and reducing inventory levels both locally and globally. In this dissertation, the main models for quantifying the BE are presented and analyzed, with emphasis in the works of Lee et al. (1997b), Chen et al. (2000), Fransoo and Wouters (2000) and Warburton (2004); in that analysis were identified several deficiencies, able to generate severe distortions in the quantification of the BE. The proposed model fully overcomes these deficiencies and presents elements that indicate that the intensity and stochastical and serial behavior of the BE can only be appropriately modeled if the lead time variability is considered and if inventory excesses are used in the order size calculation. The new model, in addition to contribute to the understanding of the BE dynamics enriching its analysis, represents appropriately the complexity of relationships among variables associated with the BE, contributing to its high predictive capacity. Finally, it is demonstrated that the model in Chen et al. (2000) represents a special case of the proposed model.

Page generated in 0.0951 seconds