1 |
Investigation of Stokes' second problem for non-Newtonian fluidsRikhotso, Deals Shaun 12 June 2014 (has links)
The motion of an incompressible fluid caused by the oscillation of a plane at plate of in nite length is termed Stokes' second problem. We assume zero velocity normal to the plate and thus simpli ed Navier-Stokes equations.
For the unsteady Stokes' second problem, solutions may be obtained by
using Laplace transforms, perturbation techniques, homotopy, di erential
transform method or Adomian decomposition method. Stokes' second problem
is discussed for second-grade and Oldroyd-B non-Newtonian fluids. This dissertation summarizes previously published work.
|
2 |
Stokes' Theorem: Integration of Differential Forms Over ChainsWållberg, Joel January 2022 (has links)
The aim of this work is to introduce differential forms on Euclidean space. The theory of differential forms provides a way of abstracting integration by formalising differentials over which an integral can be taken. The work builds towards Stokes’ Theorem for which a proof is given. Finally, using Stokes’ Theorem, three famous integral theorems from vector analysis are derived.
|
3 |
Stokes' theorem and integration on integral currents / Théorème de Stokes et intégration sur les courants entiersJulia, Antoine 09 October 2018 (has links)
Les méthodes d’intégration de jauge, telle que l’intégrale de Pfeffer sur les ensembles bornés de périmètre fini sont particulièrement adaptées à l’étude des grands théorèmes d’intégration que sont le Théorème Fondamental de l’Analyse, le Théorème de la Divergence et le Théorème de Stokes. Dans cette thèse, ces outils sont transposés à l’intégration sur des domaines singuliers, vus comme des courants entiers au sens de Federer et Fleming. On obtient un critère d’effaçabilité pour les singularités des courants considérés : les courants ayant un ensemble singulier de contenu de Minkowski relatif fini satisfont un Théorème de Stokes général, c’est le cas notamment des courants définissables dans une structure o-minimale quelconque, c’est aussi le cas de courants minimiseurs de masse sans singularité au bord. A contrario, on construit un courant de dimension 2 dans ℝ3 ayant un ensemble singulier réduit à un point, qui ne vérifie pas ce Théorème de Stokes général.Cette thèse contient aussi les définitions de méthodes d’intégration non absolument convergentes sur tout courant entier de dimension 1, ainsi que sur les courants entiers de dimension quelconque dans un espace euclidien dont les singularités sont effaçables. / Methods of gauge integration, like those developped by W. F. Pfeffer on bounded sets of finite perimeter, are well suited to the study of integration theorems, such as the Fundamental Theorem of Calculus, The Divergence Theorem and Stokes’ Theorem. In this thesis, Pfeffer Integration is transposed to the context of integral currents in the sense of Federer and Fleming. Not all integral currents are adapted to this type of gauge integration and a criterion on the singular set of the current is obtained. Well behaved currents include all 1-dimensional integral currents, integral currents definable in an o-minimal structure and mass minimizing integral currents whenever the boundary singularities are controlled. All those currents are shown to satisfy a general Stokes’ Theorem. On the other hand, an example is given of an integral current of dimension 2 in ℝ3 with only one singular point, which does not satisfy such a general Stokes-Cartan Theorem. This thesis also contains the definitions of non-absolutely convergent integrations methods on 1-dimensionalintegral currents as well as on integral currents of any dimension in Euclidean space, whenever their singular set has controlled relative Minkowski content.
|
4 |
Tensory a jejich aplikace v mechanice / Tensors and their applications in mechanicsAdejumobi, Mudathir January 2020 (has links)
The tensor theory is a branch of Multilinear Algebra that describes the relationship between sets of algebraic objects related to a vector space. Tensor theory together with tensor analysis is usually known to be tensor calculus. This thesis presents a formal category treatment on tensor notation, tensor calculus, and differential manifold. The focus lies mainly on acquiring and understanding the basic concepts of tensors and the operations over them. It looks at how tensor is adapted to differential geometry and continuum mechanics. In particular, it focuses more attention on the application parts of mechanics such as; configuration and deformation, tensor deformation, continuum kinematics, Gauss, and Stokes' theorem with their applications. Finally, it discusses the concept of surface forces and stress vector.
|
Page generated in 0.0663 seconds