• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 442
  • 38
  • Tagged with
  • 480
  • 478
  • 477
  • 367
  • 367
  • 90
  • 78
  • 72
  • 38
  • 37
  • 36
  • 35
  • 35
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Stability analysis and control design of spatially developing flows

Bagheri, Shervin January 2008 (has links)
<p>Methods in hydrodynamic stability, systems and control theory are applied to spatially developing flows, where the flow is not required to vary slowly in the streamwise direction. A substantial part of the thesis presents a theoretical framework for the stability analysis, input-output behavior, model reduction and control design for fluid dynamical systems using examples on the linear complex Ginzburg-Landau equation. The framework is then applied to high dimensional systems arising from the discretized Navier–Stokes equations. In particular, global stability analysis of the three-dimensional jet in cross flow and control design of two-dimensional disturbances in the flat-plate boundary layer are performed. Finally, a parametric study of the passive control of two-dimensional disturbances in a flat-plate boundary layer using streamwise streaks is presented.</p>
222

On focusing of strong shock waves

Eliasson, Veronica January 2005 (has links)
<p>Focusing of strong shock waves in a gas-filled thin test section with various forms of the reflector boundary is investigated. The test section is mounted at the end of the horizontal co-axial shock tube. Two different methods to produce shock waves of various forms are implemented. In the first method the reflector boundary of the test section is exchangeable and four different reflectors are used: a circle, a smooth pentagon, a heptagon and an octagon. It is shown that the form of the converging shock wave is influenced both by the shape of the reflector boundary and by the nonlinear dynamic interaction between the shape of the shock and the propagation velocity of the shock front. Further, the reflected outgoing shock wave is affected by the shape of the reflector through the flow ahead of the shock front. In the second method cylindrical obstacles are placed in the test section at various positions and in various patterns, to create disturbances in the flow that will shape the shock wave. It is shown that it is possible to shape the shock wave in a desired way by means of obstacles. The influence of the supports of the inner body of the co-axial shock tube on the form of the shock is also investigated. A square shaped shock wave is observed close to the center of convergence for the circular and octagonal reflector boundaries but not in any other setups. This square-like shape is believed to be caused by the supports for the inner body. The production of light, as a result of shock convergence, has been preliminary investigated. Flashes of light have been observed during the focusing and reflection process.</p>
223

Experimental studies of wind turbine wakes : power optimisation and meandering

Medici, Davide January 2005 (has links)
<p>Wind tunnel studies of the wake behind model wind turbines with one, two and three blades have been made in order to get a better understanding of wake development as well as the possibility to predict the power output from downstream turbines working in the wake of an upstream one. Both two-component hot-wire anemometry and particle image velocimetry (PIV) have been used to map the flow field downstream as well as upstream the turbine. All three velocity components were measured both for the turbine rotor normal to the oncoming flow as well as with the turbine inclined to the free stream direction (the yaw angle was varied from 0 to 30 degrees). The measurements showed, as expected, a wake rotation in the opposite direction to that of the turbine. A yawed turbine is found to clearly deflect the wake flow to the side showing the potential of controlling the wake position by yawing the turbine. The power output of a yawed turbine was found to depend strongly on the rotor. The possibility to use active wake control by yawing an upstream turbine was evaluated and was shown to have a potential to increase the power output significantly for certain configurations. An unexpected feature of the flow was that spectra from the time signals showed the appearance of a low frequency fluctuation both in the wake and in the flow outside. This fluctuation was found both with and without free stream turbulence and also with a yawed turbine. The non-dimensional frequency (Strouhal number) was independent of the freestream velocity and turbulence level but increases with the yaw angle. However the low frequency fluctuations were only observed when the tip speed ratio was high. Porous discs have been used to compare the meandering frequencies and the cause in wind turbines seems to be related to the blade rotational frequency. It is hypothesized that the observed meandering of wakes in field measurements is due to this shedding.</p>
224

Numerical Computations of Internal Combustion Engine related Transonic and Unsteady Flows

Bodin, Olle January 2009 (has links)
<p>Vehicles with internal combustion (IC) engines fueled by hydrocarbon compounds have been used for more than 100 years for ground transportation. During the years and in particular in the last decade, the environmental aspects of IC engines have become a major political and research topic. Following this interest, the emissions of pollutants such as NO<sub>x</sub>, CO<sub>2</sub> and unburned hydrocarbons (UHC) from IC engines have been reduced considerably. Yet, there is still a clear need and possibility to improve engine efficiency while further reducing emissions of pollutants. The maximum efficiency of IC engines used in passenger cars is no more than $40\%$ and considerably less than that under part load conditions. One way to improve engine efficiency is to utilize the energy of the exhaust gases to turbocharge the engine. While turbocharging is by no means a new concept, its design and integration into the gas exchange system has been of low priority in the power train design process. One expects that the rapidly increasing interest in efficient passenger car engines would mean that the use of turbo technology will become more widespread. The flow in the IC-engine intake manifold determines the flow in the cylinder prior and during the combustion. Similarly, the flow in the exhaust manifold determines the flow into the turbine, and thereby the efficiency of the turbocharging system. In order to reduce NO<sub>x</sub> emissions, exhaust gas recirculation (EGR) is used. As this process transport exhaust gases into the cylinder, its efficiency is dependent on the gas exchange system in general. The losses in the gas exchange system are also an issue related to engine efficiency. These aspects have been addressed up to now rather superficially. One has been interested in global aspects (e.g. pressure drop, turbine efficiency) under steady state conditions.In this thesis, we focus on the flow in the exhaust port and close to the valve. Since the flow in the port can be transonic, we study first the numerical modeling of such a flow in a more simple geometry, namely a bump placed in a wind tunnel. Large-Eddy Simulations of internal transonic flow have been carried out. The results show that transonic flow in general is very sensitive to small disturbances in the boundary conditions. Flow in the wind tunnel case is always highly unsteady in the transonic flow regime with self excited shock oscillations and associated with that also unsteady boundary-layer separation. To investigate sensitivity to periodic disturbances the outlet pressure in the wind tunnel case  was varied periodically at rather low amplitude. These low amplitude oscillations caused hysteretic behavior in the mean shock position and appearance of shocks of widely different patterns. The study of a model exhaust port shows that at realistic pressure ratios, the flow is transonic in the exhaust port. Furthermore, two pairs of vortex structures are created downstream of the valve plate by the wake behind the valve stem and by inertial forces and the pressure gradient in the port. These structures dissipate rather quickly. The impact of these structures and the choking effect caused by the shock on realistic IC engine performance remains to be studied in the future.</p> / CICERO
225

Control Strategy for Energy Efficient Fluid Power Actuators : Utilizing Individual Metering

Eriksson, Björn January 2007 (has links)
<p>This thesis presents a solution enabling lower losses in hydraulic actuator systems. A mobile fluid power system often contains several different actuators supplied with a single load sensing pump. One of the main advantages is the need of only one system pump. This makes the fluid power system compact and cost-effective.</p><p>A hydraulic load often consists of two ports, e.g. motors and cylinders. Such loads have traditionally been controlled by a valve that controls these ports by one single control signal, namely the position of the spool in a control valve. In this kind of valve, the inlet (meter-in) and outlet (meter-out) orifices are mechanically connected. The mechanical connection makes the system robust and easy to control, at the same time as the system lacks flexibility. Some of the main drawbacks are</p><p><strong> </strong></p><p><strong>The fixed relation </strong>between the inlet and outlet orifices in most applications produce too much throttling at the outlet orifice under most operating conditions. This makes the system inefficient.</p><p><strong> </strong></p><p><strong>The flow directions </strong>are fixed for a given spool position; therefore, no energy recuperation and/or regeneration ability is available.</p><p>In this thesis a novel system idea enabling, for example, recuperation and regeneration is presented. Recuperation is when flow is taken from a tank, pressurized by external loads, and then fed back into the pump line. Regeneration is when either cylinder chambers (or motor ports) are connected to the pump line. Only one system pump is needed. Pressure compensated (load independent), bidirectional, poppet valves are proposed and utilized.</p><p>The novel system presented in this thesis needs only a position sensor on each compensator spool. This simple sensor is also suitable for identification of mode switches, e.g. between normal, differential and regenerative modes. Patent pending.</p><p>The balance of where to put the functionality (hardware and/or software) makes it possible to manoeuvre the system with maintained speed control in the case of sensor failure. The main reason is that the novel system does not need pressure transducers for flow determination. Some features of the novel system:</p><p><strong>Mode switches </strong>The mode switches are accomplished without knowledge about the pressures in the system</p><p><strong>Throttle losses </strong>With the new system approach, choice of control and measure signals, the throttle losses at the control valves are reduced</p><p><strong>Smooth mode switches </strong>The system will switch to regenerative mode automatically in a smooth manner when possible</p><p><strong>Use energy stored in the loads </strong>The load, e.g. a cylinder, is able to be used as a motor when possible, enabling the system to recuperate overrun loads</p><p>The system and its components are described together with the control algorithms that enable energy efficient operation. Measurements from a real application are also presented in the thesis.</p>
226

Greehouse Gas Simulations in Munich : Investigation of Wind Averaging Techniques for analysis of column measurements (XCO2) using CFD

Pawa, Diptesh January 2018 (has links)
The underlying objective of this thesis was to perform GHG simulation studies to predict the dispersion and transport of greenhouse gases emitted from a thermal power plant in order to assess the extent of dangerous living environment for those surrounding it in case of an unforeseen calamity. The research carried out during this thesis was to investigate the method of wind averaging techniques to analyse column measurements (XCO2). The reason for adopting this method of analysis was to correlate the physical aspect of wind data to average over a certain period of time wherein the amount of XCO2 (in ppm) observed displays values greater than the background concentration. CFD simulations were performed using the open source code, OpenFOAM, and steady RANS models modified with turbulence boundary conditions for the urban environment case with previously validated simulation studies carried out for the same region in Munich, Germany. Initial results performed during the testing stage indicated that maximum average XCO2 value (in ppm) was recorded at the lowest value of mean wind speed and at a more downwind location of the measurement site. The results obtained from simulation studies on comparison with experimental values (arithmetic average) also suggest that for the same time interval, the difference in values for similar wind conditions as mentioned before makes this technique a more favourable choice for comparison and verification at another time instant.  There have been recent developments in GHG simulation based studies and however the current method does represent certain drawbacks, an insight into performing averaging analysis at time intervals representing peak XCO2 moments could be demonstrated which can also help in reducing the overall number of simulations as well as provide information with respect to mitigation measures based on transport and diffusion behavior.
227

A sensitivity analysis of the Winter-Kennedy method

Baidar, Binaya January 2018 (has links)
Hydropower is among the lowest-cost electrical energy sources due to its long lifespan and lower operation and maintenance cost. The hydro-mechanical components of hydropower plants generally last about four to five decades, then they are either overhauled or replaced. The major upgrades and refurbishments of the hydropower plants that are ongoing have also been motivated by the introduction of new rules and regulations, safety or environmentally friendly and improved turbine designs. Whatever are the drivers, the refurbishments are usually expected to increase efficiency, flexibility and more power from the plant. Efficiency measurement is usually performed after refurbishments. While it is relatively straightforward to measure efficiency in high head machines due to the availability of several code-accepted methods, similar measurements in low head plants remain a challenge. The main difficulty lies in the discharge/flow rate measurement. The reason is due to the continuously varying cross-section and short intake, as a result, the flow profile or parallel streamlines cannot be established. Among several relative methods, the Winter-Kennedy (WK) method is widely used to determine the step-up efficiency before and after refurbishment. The WK method is an index testing approach allowing to determine the on-cam relationship between blade and guide vane angles for Kaplan turbine as well. The method utilizes features of the flow physics in a curvilinear motion. A pair of pressure taps is placed at an inner and outer section of the spiral case (SC). The method relates discharge (Q) as Q=K(dP)^n, where K is usually called as the WK constant and n is the exponent whose value varies from 0.48 to 0.52. dP is the differential pressure from the pair of pressure taps placed on the SC.   Although the method has very high repeatability, some discrepancies were noticed in previous studies. The reasons are often attributed to the change in local flow conditions due to the change in inflow conditions, corrosions, or change in geometry. Paper A is a review of the WK method, which includes the possible factors that can influence the WK method. Considering the possible factors, the aim of this thesis is to study the change in flow behavior and its impact on the coefficients. Therefore, a numerical model of a Kaplan turbine has been developed. The turbine model of Hölleforsen hydropower plant in Sweden was used in the study. The plant is considered as a low head with 27-m head and a discharge of 230 m3/s. The 1:11 scale model of the prototype is used as the numerical model in this study, which has 0.5 m runner diameter, 4.5 m head, 0.522 m3/s discharge and 595 rpm at its best efficiency point. A sensitivity analysis of the WK method has been performed with the help of CFD simulations. The numerical results are compared with the previously conducted experiment on the model. The study considers four different WK configurations at seven locations along the azimuthal direction. The simulations have been performed with different inlet boundary conditions (Paper B and Paper C) and different runner blade angles (Paper C). The CFD results show that the WK coefficients are sensitive to inlet conditions. The study also concludes that to limit the impact of a change in inflow conditions, runner blade angle on the coefficients, the more suitable WK locations are at the beginning of the SC with the inner pressure tap placed between stay vanes on the top wall.
228

Development of a general acoustic model for an arbitrary surveillance camera design

Fei, Shenyang January 2018 (has links)
This thesis studies how the mechanical design of a surveillance camera affects the acoustic performance, mainly in terms of the frequency response within the human hearing range. During the project, the mechanical characteristics that affect frequency response were investigated by measuring the camera’s audio behavior in an anechoic chamber. A theoretical and adaptable acoustic model was built in COMSOL to simulate the frequency response of the sound path. Measurement and simulation results were compared to identify critical aspects of the mechanical design and adjust accordingly for better acoustic performance.
229

A CFD Analysis of Cyclodial Propellers

Thelin, Fredrik January 2017 (has links)
The quest for more efficient machines is always ongoing in the engineering world. This project is no different. ABB are investigating a new type of propeller that seems to offer increased efficiency compared to normal screw propellers. That is a so called foil wheel propeller. The foil move in a circular pattern with the fluid stream moving in the radial direction of the propeller instead of the axial as in a screw propeller. If the propeller is placed and modeled correctly it can also be used as a thrust vectoring device. This report focuses on the fluid physics of the foil wheel propeller, or as it is called in this report radial flow propeller. First of all the movements and interactions of the blades must be understood. Both to keep the efficiency high to compete with screw propellers, but also to foresee any problems that may occur with such a new device. A scaled down version of the propeller have been commissioned by ABB and will be tested in some time after the work within this report is completed. The effects associated to this will also be analyzed. The tool to compute the flow physics of the radial flow propeller will be computational fluid dynamics. Computational fluid dynamics uses a numerical method to compute the entire fluid field in space and time. The flow around the propeller is highly complex so a detailed analysis is needed if a well functioning control system is to be constructed for instance. The differences between the downscale and the full-scale are great, even when the non dimensional coefficients are considered. The down-scale case will be less efficient, it will be difficulties predicting the performance of the full-scale since the downscale flow is much less powerful than the full-scale case. The interaction between the blades has a large effect. There is a strong relation between angle of attack and the number of blades. The forces that are large change by about 30\% so it must definitely be considered if a model is to be used for a control system.
230

High-order finite difference approximations for hyperbolic problems : multiple penalties and non-reflecting boundary conditions

Frenander, Hannes January 2017 (has links)
In this thesis, we use finite difference operators with the Summation-By-Partsproperty (SBP) and a weak boundary treatment, known as SimultaneousApproximation Terms (SAT), to construct high-order accurate numerical schemes.The SBP property and the SAT’s makes the schemes provably stable. The numerical procedure is general, and can be applied to most problems, but we focus on hyperbolic problems such as the shallow water, Euler and wave equations. For a well-posed problem and a stable numerical scheme, data must be available at the boundaries of the domain. However, there are many scenarios where additional information is available inside the computational domain. In termsof well-posedness and stability, the additional information is redundant, but it can still be used to improve the performance of the numerical scheme. As a first contribution, we introduce a procedure for implementing additional data using SAT’s; we call the procedure the Multiple Penalty Technique (MPT). A stable and accurate scheme augmented with the MPT remains stable and accurate. Moreover, the MPT introduces free parameters that can be used to increase the accuracy, construct absorbing boundary layers, increase the rate of convergence and control the error growth in time. To model infinite physical domains, one need transparent artificial boundary conditions, often referred to as Non-Reflecting Boundary Conditions (NRBC). In general, constructing and implementing such boundary conditions is a difficult task that often requires various approximations of the frequency and range of incident angles of the incoming waves. In the second contribution of this thesis,we show how to construct NRBC’s by using SBP operators in time. In the final contribution of this thesis, we investigate long time error bounds for the wave equation on second order form. Upper bounds for the spatial and temporal derivatives of the error can be obtained, but not for the actual error. The theoretical results indicate that the error grows linearly in time. However, the numerical experiments show that the error is in fact bounded, and consequently that the derived error bounds are probably suboptimal.

Page generated in 0.2849 seconds