1 |
Rôle de la sirtuine 1 dans la modulation de la réponse des cardiomyocytes au stress RE et à l’apoptose / Role of the sirtuine 1 in the modulation of endoplasmic reticulum stress response and apoptosis in cardiomyocytesProla, Alexandre 30 June 2014 (has links)
Des altérations de fonctions physiologiques du réticulum endoplasmique (RE) induisent un processus appelé stress RE. Dans le domaine cardiovasculaire, plusieurs travaux ont montré que le stress RE contribue au développement de la majorité des pathologies cardiaques. En réponse au stress RE, la réponse UPR (Unfolded Protein Response) est activée afin de restaurer l’homéostasie du RE et de permettre la survie de la cellule. Néanmoins, dans le cas d’un stress RE excessif ou prolongé, les altérations ne pouvant plus être compensées, la cellule est éliminée par apoptose contribuant au développement de la pathologie cardiaque. Une thérapie prometteuse pour lutter contre ce type de pathologie consisterait donc à moduler la réponse au stress RE afin d’inhiber l’apoptose des cardiomyocytes. Au cours de ma thèse, je me suis intéressé aux modifications induites en réponse au stress RE dans le cœur et au rôle de la sirtuine 1 (SIRT1) dans la modulation de cette réponse. SIRT1 est une déacétylase activée par différents stress cardiaques et connue pour favoriser la survie cellulaire. D’une part, j’ai mis en évidence que le stress RE induit une modification importante de l’architecture des cardiomyocytes et en particulier une augmentation des contacts RE/mitochondries associée à une altération de la fonction mitochondriale. D’autre part, en utilisant une lignée cellulaire (H9c2), des cardiomyocytes de rat adulte et des souris invalidées pour SIRT1, j’ai démontré in vitro et in vivo (i) que SIRT1 est activée et joue un rôle cardioprotecteur en réponse au stress RE, (ii) que SIRT1 limite la réponse UPR en régulant spécifiquement la voie PERK, et (iii) que SIRT1 régule la voie PERK en déacétylant le facteur d’initiation de la traduction, eIF2 sur deux résidus lysine. Ces résultats montrent donc pour la première fois que SIRT1 est impliquée dans la régulation de la réponse apoptotique au stress RE des cardiomyocytes et suggèrent que cette déacétylase serait une cible thérapeutique intéressante pour prévenir l’apoptose dans les pathologies cardiaques liées au stress RE. / Impairment of physiological functions of the endoplasmic reticulum (ER) induces the so-called ER stress. ER stress has been implicated in many cardiovascular diseases including ischemic heart, hypertrophy and heart failure. To overcome the deleterious effect of ER stress, an evolutionarily conserved adaptive response known as Unfolded Protein Response (UPR) is activated in order to restore ER homeostasis and promote cell survival. Nevertheless, in the case of prolonged or severe ER stress, apoptotic cell death is ultimately activated to eliminate stressed cells, thus contributing to the development of the pathology. The modulation of ER stress response, in order to reduce cardiomyocyte apoptosis, thus appears as a promising therapeutic strategy for such pathologies. During my Ph.D thesis, I studied the modification that occur during ER stress response in the heart and the role of the sirtuine 1 (SIRT1) in the modulation of this response. SIRT1 is a deacetylase activated in response to many cardiac stresses to promote cell survival. First, we showed that ER stress induces important structural modifications of cardiomyocytes and in particular an increase in contact sites between ER and mitochondria associated with an alteration of the mitochondrial function. Secondly, using a cell line (H9c2), freshly isolated adult rat ventricular cardiomyocytes and SIRT1-KO mice, we demonstrated in vitro and in vivo (i) that SIRT1 is activated and plays a cardioprotective role in ER stress response, (ii) that SIRT1 attenuates the UPR by specifically regulating the PERK pathway, and (iii) that SIRT1 modulates PERK axis by deacetylating the translation initiation factor, eIF2on two lysine residues. Collectively, our results provide the first evidence that SIRT1 modulates ER stress-induced apoptosis in the heart and suggest that this deacetylase may represent a therapeutic target to prevent apoptosis in cardiac pathologies associated to ER stress.
|
2 |
Régulation de l'expression de TXNIP dans les monocytes des patients diabétiques de type 2 : rôle des lipides et du stress du réticulum endoplasmique / Regulation of TXNIP expression in type 2 diabetes patients : role of the lipids and the endoplasmic reticulum stressSzpigel, Anaïs 17 March 2017 (has links)
Le diabète de type 2 (DT2) est une pathologie largement associée à l'obésité dont la prévalence est en constante augmentation dans le monde. L'inflammation et le stress du réticulum endoplasmique (RE) ont été largement décrits pour leur rôle dans la pathogénèse du DT2 en favorisant une insulinorésistance des tissus périphériques et une altération de la sécrétion d'insuline par le pancréas. La protéine Thioredoxine Interacting Protein (TXNIP) est activée lors d'un stress RE et joue un rôle important dans la mise en place de la réponse inflammatoire en activant l'inflammasome NLRP3 (Nod-Like Receptor 3). Nous nous sommes donc intéressés au rôle de cette protéine dans les monocytes des patients DT2. Nous montrons que la composition lipidique du plasma des patients DT2 pourrait être impliquée dans la mise en place d'un stress RE et d'une réponse UPR (Unfolded Protein Response) augmentée dans les monocytes de ces patients. Cette augmentation est associée à une activation de l'expression de TXNIP et des marqueurs de l'inflammation dans ces cellules qui pourrait participer à la mise en place d'une inflammation systémique chez ces patients. / Type 2 diabetes (T2D) is a pathology largely associated with obesity, which is rising constantly around the world. Inflammation and endoplasmic reticulum (ER) stress have been largely associated with the pathogenesis of DT2, promoting insulin resistance in peripheral tissues and a defect in insulin secretion from the pancreas. During ER stress the Thioredoxin Interacting Protein (TXNIP) is activated and plays an important role in the onset of inflammatory responses by activating the NLRP3 (Nod-Like Receptor 3) inflammasome. Hence we studied the role of TXNIP in monocytes from T2D patients. We have shown that the plasmatic lipid composition from T2D patients could be implicated in the onset of ER stress and an increase in the UPR (Unfolded Protein Response) in monocytes from T2D patients. This increase is associated with an activation of TXNIP expression and inflammatory markers in these cells, which could participate to the onset of systemic inflammation seen in T2D.
|
3 |
Rôle de la sirtuine 1 dans la modulation des réponses apoptotique et autophagique du coeur au stress du réticulum endoplasmique / Role of Sirtuin 1 in the modulation of ER stress-induced apoptosis and autophagy in heartPires da silva, Julie 31 May 2018 (has links)
Le réticulum endoplasmique rugueux (RE), assure la synthèse, le repliement et la maturation des protéines de la voie de sécrétion. Les altérations des fonctions physiologiques du RE, entrainent l’accumulation de protéines mal repliées dans la lumière du RE, une condition appelée stress RE. En réponse au stress RE, un mécanisme compensatoire adaptatif appelé Unfolded Protein Response (UPR) est activé afin de restaurer l’homéostasie du RE et de permettre la survie de la cellule. Dans le cas d’un stress RE sévère ou prolongé, les altérations ne pouvant plus être compensées, la cellule est éliminée par apoptose contribuant ainsi au développement de pathologies cardiaques. Le but des recherches actuelles sur le stress RE en physiopathologie cardiaque n’est pas d’inhiber la réponse au stress RE, mais plutôt de la moduler afin de limiter l’apoptose des cardiomyocytes et de protéger le cœur. Dans ce contexte, nous avons mis en évidence que le stress RE induit une modification importante de l’architecture des cardiomyocytes associée à une altération de la fonction mitochondriale. De plus, nous avons montré que SIRT1, une désacétylase dépendante du NAD+, inhibe l’apoptose mitochondriale induite par un stress RE en limitant spécifiquement l’activation de la voie PERK de la réponse UPR via la désacétylation du facteur eIF2á sur la lysine K143. Enfin, nos résultats indiquent que SIRT1 protège les cardiomyocytes de l’apoptose induite par le stress RE en favorisant la mitophagie, via une activation de la voie de signalisation eEF2K/eEF2. Ces résultats montrent que SIRT1 est impliquée dans la régulation de la réponse autophagique et apoptotique des cardiomyocytes au stress RE et suggèrent que cette désacétylase serait une cible thérapeutique intéressante pour limiter le développement des pathologies cardiaques liées au stress RE. / The endoplasmic reticulum (ER) functions to properly synthesize, fold and process secreted and transmembrane proteins. Impairment of ER function induces an accumulation of misfolded proteins in the ER lumen, a condition termed ER stress. In response to ER stress, an adaptive compensatory mechanism called Unfolded Protein Response (UPR) is activated to restore ER homeostasis and promote cell survival. In the case of severe or prolonged ER stress, homeostasis cannot be restored and the cell is eliminated by apoptosis contributing to the development of cardiac pathologies. Currently, cardiac therapy based on ER stress modulation to conserve beneficial adaptations and to avoid cardiomyocyte apoptosis is viewed as a promising avenue towards effective therapies of ER stress-associated cardiac diseases.In this context, we demonstrated that ER stress induces architectural modifications and alterations of the mitochondrial function in cardiomyocytes. Furthermore, we showed that SIRT1, a NAD+-dependent deacetylase, inhibits mitochondrial apoptosis by modulating the activation of the PERK pathway of the UPR through deacetylation of the translation initiation factor eIF2á on lysine K143. Our results also indicate that SIRT1 protects cardiomyocyte from ER stress-induced apoptosis by activating mitophagy through eEF2K/eEF2 pathway. Collectively, these data demonstrate that SIRT1 regulates ER stress-induced autophagy and apoptosis in the heart and suggest that this deacetylase may be a therapeutic target to protect the heart against ER stress-induced injury.
|
4 |
Modélisations de maladies des motoneurones en utilisant le poisson zébréLissouba, Alexandra 08 1900 (has links)
No description available.
|
Page generated in 0.0524 seconds