• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Finite-volume simulations of Maxwell's equations on unstructured grids

Jeffrey, Ian 07 April 2011 (has links)
Herein a fully parallel, upwind and flux-split Finite-Volume Time-Domain (FVTD) numerical engine for solving Maxwell's Equations on unstructured grids is developed. The required background theory for solving Maxwell's Equations using FVTD is given in sufficient detail, including a description of both the temporal and spatial approximations used. The details of the local-time stepping strategy of Fumeaux et al. is included. A global mesh-truncation scheme using field integration over a Huygens' surface is also presented. The capabilities of the FVTD algorithm are augmented with thin-wire and subcell circuit models that permit very flexible and accurate simulations of circuit-driven wire structures. Numerical and experimental validation shows that the proposed models have a wide-range of applications. Specifically, it appears that the thin-wire and subcell circuit models may be very well suited to the simulation of radio-frequency coils used in magnetic resonance imaging systems. A parallelization scheme for the volumetric field solver, combined with the local-time stepping, global mesh-truncation and subcell models is developed that theoretically provides both linear time- and memory scaling in a distributed parallel environment. Finally, the FVTD code is converted to the frequency domain and the possibility of using different flux-reconstruction schemes to improve the iterative convergence of the Finite-Volume Frequency-Domain algorithm is investigated.
2

Finite-volume simulations of Maxwell's equations on unstructured grids

Jeffrey, Ian 07 April 2011 (has links)
Herein a fully parallel, upwind and flux-split Finite-Volume Time-Domain (FVTD) numerical engine for solving Maxwell's Equations on unstructured grids is developed. The required background theory for solving Maxwell's Equations using FVTD is given in sufficient detail, including a description of both the temporal and spatial approximations used. The details of the local-time stepping strategy of Fumeaux et al. is included. A global mesh-truncation scheme using field integration over a Huygens' surface is also presented. The capabilities of the FVTD algorithm are augmented with thin-wire and subcell circuit models that permit very flexible and accurate simulations of circuit-driven wire structures. Numerical and experimental validation shows that the proposed models have a wide-range of applications. Specifically, it appears that the thin-wire and subcell circuit models may be very well suited to the simulation of radio-frequency coils used in magnetic resonance imaging systems. A parallelization scheme for the volumetric field solver, combined with the local-time stepping, global mesh-truncation and subcell models is developed that theoretically provides both linear time- and memory scaling in a distributed parallel environment. Finally, the FVTD code is converted to the frequency domain and the possibility of using different flux-reconstruction schemes to improve the iterative convergence of the Finite-Volume Frequency-Domain algorithm is investigated.
3

Hybrid Time-Domain Methods and Wire Models for Computational Electromagnetics

Ledfelt, Gunnar January 2001 (has links)
No description available.
4

Hybrid Time-Domain Methods and Wire Models for Computational Electromagnetics

Ledfelt, Gunnar January 2001 (has links)
No description available.

Page generated in 0.0673 seconds