• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the Effects of Anthelmintic Compounds at the Site of Zinc Potentiation on Alpha4Beta4 Neuronal Nicotinic Acetylcholine Receptors

Roden, Brett 01 January 2008 (has links)
Neuronal nicotinic acetylcholine receptors can have their function modulated by zinc. Depending on concentration and subunit composition, zinc either inhibits or potentiates receptor function. The zinc ion potentiates the alpha4beta4 receptor at non-agonist binding interfaces or "pseudo sites." Zinc potentiation is reduced if certain residues are mutated or spatially interfered with. The residue contributing most to this potentiation reduction effect is histidine 162 on the alpha4 subunit. The anthelmintic compound levamisole potentiates acetylcholine response of certain neuronal nicotinic receptors. Levamisole and its functional analogues morantel, oxantel, and pyrantel all were found to potentiate alpha4beta4 receptors at low (µM) concentrations and inhibit them at high (mM) concentrations. Oxantel showed the greatest degree of potentiation, about a third of the maximal zinc potentiation measured. Oxantel was screened using the substituted cysteine accessibility method (SCAM) against the residue histidine 162 as well as nearby alpha4 residues histidine 61 and glutamate 59 and the beta4 residue aspartate 195. Screening was carried out by mutating said residues into cysteine, followed by covalent linkage with a disulfide bridge of that residue with a methanethiosulfonate compound. SCAM experiments allowed testing of the effects of a single residue and the area immediately adjacent to it. Receptors that lost zinc potentiation capacity from site-directed mutagenesis at the his 162 residue and subsequent methanethiosulfonate reaction still showed regular potentiation following oxantel treatment. Although these compounds exhibit similar biphasic potentiation dose-response curves as zinc, their mechanism for potentiation is not through the same mechanism.
2

Functional and Structural Study of Pannexin1 Channels

Wang, Junjie 21 April 2009 (has links)
Pannexins are vertebrate proteins with limited sequence homology to the invertebrate gap junction proteins, the innexins. However, in contrast to innexins and the vertebrate connexins, pannexins do not form gap junction channels. Instead they appear to solely function as unpaired membrane channels allowing the flux of molecules, including ATP, across the plasma membrane. We provided additional evidence for their ATP release function by demonstrating that the connexin mimetic peptides, which were thought to inhibit ATP release through connexin channels, do not inhibit their host connexin channels but instead inhibit pannexin1 channels by a mechanism of steric block. Therefore, the inhibitory effects of mimetic peptides on ATP release may represent supporting evidence for a role of pannexin1 in ATP release. We also analyzed the pore structure of pannexin1 channels with the Substituted Cysteine Accessibility Method. The thiol reagents MBB and MTSET reacted with several positions in the external portion of the first transmembrane segment and the first extracellular loop. In addition, MTSET reactivity was found in the internal portion of TM3. These data suggest that portions of TM1, E1 and TM3 line the pore of pannexin1 channels. Thus, the pore structure of pannexin1 is similar to that of connexin channels.
3

Screening and application of microbial enzymes useful for the synthesis of bioactive S-substituted cysteine compounds / 生理活性を示すS-置換システイン類の合成に有用な微生物酵素の探索と応用

Mizutani, Taku 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(農学) / 甲第25333号 / 農博第2599号 / 新制||農||1106(附属図書館) / 京都大学大学院農学研究科応用生命科学専攻 / (主査)教授 小川 順, 教授 矢﨑 一史, 教授 栗原 達夫 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
4

Study of the Structure and Function of CXC Chemokine Receptor 2

Kwon, Hae Ryong 01 December 2010 (has links)
It has been shown that the amino terminus and second extracellular loop (EC2) of CXCR2 are crucial for ligand binding and receptor activation. The lack of an ionic lock motif in the third intracellular loop of CXCR2 focuses an investigation of the mechanism by which these two extracellular regions contribute to receptor recognition and activation. The first objective of this investigation was to predict the structure of CXCR2 based on known structures of crystallized GPCRs. Rhodopsin, β2-adrenergic receptor, CXCR4 were used for homology modeling of CXCR2 structure. Highly conserved motifs found in sequence alignments of the template GPCRs were helpful to generate CXCR2 models. We also studied solvent accessibility of residues in the EC2 of CXCR2 in the inactive state. Most of the residues in the EC2 were found to be solvent accessible in the inactive state, suggesting the residues might be involved in ligand recognition. Second, we studied the role of charged residues in the EC2 of CXCR2 in ligand binding and receptor activation using constitutively active mutants (CAM) of CXCR2, D9K and D9R. Combinatorial mutations consisting of the CAM in the amino terminus and single mutations of charged residues in the EC2 were generated to study two concepts including “attraction” and “repulsion” models. The mutant receptors were used to test their effects on cell surface expression, ligand binding, receptor activation through PLC-β3, and cellular transformation. All the mutations in the repulsion model result in CXCR2 receptors that are unable to bind ligand, suggesting that each of the Arg residues in the EC2 are important for ligand recognition. Interestingly, mutations in the attraction model partially inhibited receptor activation by the CAM D9K, suggesting that Glu198 and Asp199 residues in the EC2 are associated with receptor activation. Furthermore, a novel CAM, E198A/D199A, was identified in this study. These negatively charged residues are very close to a conserved disulfide bond linking the EC2 and the third transmembrane. In this sense, these current discoveries concerning the structural basis of CXCR2 and interdisciplinary approaches would provide new insights to investigate unknown mechanisms of interaction with its cognate ligands and receptor activation.

Page generated in 0.0548 seconds