81 |
Modelling of physical vapour deposition (PVD) process on cutting tool using response surface methodology (RSM)Abd Rahman, M. N. January 2009 (has links)
The Physical Vapour Deposition (PVD) magnetron sputtering process is one of the widely used techniques for depositing thin film coatings on substrates for various applications such as integrated circuit fabrication, decorative coatings, and hard coatings for tooling. In the area of coatings on cutting tools, tool life can be improved drastically with the application of hard coatings. Application of coatings on cutting tools for various machining techniques, such as continuous and interrupted cutting, requires different coating characteristics, these being highly dependent on the process parameters under which they were formed. To efficiently optimise and customise the deposited coating characteristics, PVD process modelling using RSM methodology was proposed. The aim of this research is to develop a PVD magnetron sputtering process model which can predict the relationship between the process input parameters and resultant coating characteristics and performance. Response Surface Methodology (RSM) was used, this being one of the most practical and cost effective techniques to develop a process model. Even though RSM has been used for the optimisation of the sputtering process, published RSM modelling work on the application of hard coating process on cutting tool is lacking. This research investigated the deposition of TiAlN coatings onto tungsten carbide cutting tool inserts using PVD magnetron sputtering process. The input parameters evaluated were substrate temperature, substrate bias voltage, and sputtering power; the out put responses being coating hardness, coating roughness, and flank wear (coating performance). In addition to that, coating microstructures were investigated to explain the behaviour of the developed model. Coating microstructural phenomena assessed were; crystallite grain size, XRD peak intensity ratio I111/I200 and atomic number percentage ratio of Al/Ti. Design Expert 7.0.3 software was used for the RSM analysis. Three process models (hardness, roughness, performance) were successfully developed and validated. The modelling validation runs were within the 90% prediction interval of the developed models and their residual errors compared to the predicted values were less than 10%. The models were also qualitatively validated by justifying the behaviour of the output responses (hardness, roughness, and flank wear) and microstructures (Al/Ti ratio, crystallographic peak ratio I111/1200, and grain size) with respect to the variation of the input variables based on the published work by researchers and practitioners in this field. The significant parameters that influenced the coating hardness, roughness, and performance (flank wear) were also identified. Coating hardness was influenced by the substrate bias voltage, sputtering power, and substrate temperature; coating roughness was influenced by sputtering power and substrate bias; and coating performance was influenced by substrate bias. The analysis also discovered that there was a significant interaction between the substrate temperature and the sputtering power which significantly influenced coating hardness, roughness, and performance; this interaction phenomenon has not been reported in previously published literature. The correlation study between coating characteristics, microstructures and the coating performance (flank wear) suggested that the coating performance correlated most significantly to the coating hardness with Pearson coefficient of determination value (R2) of 0.7311. The study also suggested some correlation between coating performance with atomic percentage ratio of Al/Ti and grain size with R2 value of 0.4762 and 0.4109 respectively.
|
82 |
Metod för mätning av restspänningar i PVD-beläggningar på tunna substrat / Method of measuring residual stress in PVD coatings on thin substratesEriksson, Philip, Hall, Emily, Jacobson, Felix, Saikoff, Ebba, Söderberg, Johanna, Theill, Pontus, Åkerfeldt, Erika January 2016 (has links)
The aim of this project was to, based on a given idea, develop and evaluate a method for measuring residual stress in thin PVD coatings. AlCrN was deposited, by PVD, on thin circular samples of stainless steel foil and the radius of the emerged curvature was measured using an optical profilometer. From the radius data the residual stress in the coating of each sample was calculated. The foil samples examined were of two different thicknesses, 0.3 mm and 0.5 mm. With the parameters of the project the foils of 0.3 mm were found most suitable. Furthermore, the method was compared to an already established method where depositions are made on thicker substrates, which are then ground to an appropriate thickness. A correlation factor between the two methods was calculated and found to be 0.91 ± 0.28. Finally, the possibility of adapting the method in running production was investigated. Cost and time analyses were conducted and both supported the applicability of the method. / Projektets syfte var att utveckla och utvärdera en metod för att mäta restspänningar i tunna PVD-beläggningar utifrån en redan befintlig idé. Tunna cirkulära prover av rostfritt stål belades med AlCrN genom PVD och radien på den utböjning som uppstod mättes med en optisk profilometer. Restspänningen bestämdes sedan utifrån den uppmätta radien. Folier av två olika tjocklekar, 0,3 mm och 0,5 mm, utvärderades. Med de processparametrar som användes i projektet visades att folien med tjocklek 0,3 mm var den bäst lämpade. Metoden jämfördes även med en etablerad metod där tjocka substrat beläggs och sedan slipas ned till lämplig tjocklek. En korrelationsfaktor som relaterar de två metoderna bestämdes till 0,91 ± 0,28. Slutligen undersöktes möjligheterna att använda metoden i löpande produktion. Kostnads- och tidsanalyser utfördes och resultaten stödjer metodens användbarhet.
|
83 |
Modified chitosan nano-substrates for mycobacterial captureFortuin, Lisa 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2016. / ENGLISH ABSTRACT: Tuberculosis (TB) is one of the world’s deadliest diseases, with one third of the population being infected by it. The diagnosis of active tuberculosis entails finding and identifying Mycobacterium tuberculosis (Mtb), the causative pathogen in a specimen of bodily fluid from the patient. Multiple samples will improve the diagnostic yield and specimen volumes should therefore be as large as possible, which is often challenging for patients and especially younger children. Alternatively, a smaller volume could be required if there was a manner in which to concentrate the bacteria within a specimen, through use of a substrate which has an affinity for the pathogenic species. Polymers having intrinsic cellular activity are of interest as such substrates, one such being the natural polysaccharide, chitosan. In this thesis, a variety of modified chitosan derivatives were prepared as potential Mtb-capturing substrates. This was achieved by modifying chitosan with a variety of moieties, selected based on possible interactions with the Mtb cell wall, to render various quaternary ammonium salts of the polymer chitosan. The quaternized chitosan derivatives were then used to synthesize nano-substrates having an affinity for Mtb. Polymer coated superparamagnetic magnetite nanoparticles (SPMNs) were synthesized via an in situ co-precipitation technique, in which modified chitosan is able to chelate with the metal core. Polymer nanofibers were also electrospun via the electrospinning technique. The prepared derivative, N-trimethylammonium chitosan chloride (TMC), was electrospun into nanofibers by blending with suitable non-ionogenic polymers, namely polyvinyl alcohol (PVA), polyethylene oxide (PEO), polyvinyl pyrrolidone (PVP) and polyacrylamide (PAM), required to facilitate nanofiber formation. Affinity studies were conducted between the modified chitosan nano-substrates and the bacillus Calmette-Guérin (BCG) strain of Mycobacterium bovis, the attenuated Mtb-mimic bacteria, for evaluation as mycobacterium capturing substrates. The successful capture of BCG onto the surfaces of the various modified chitosan nanofibers and modified chitosan coated superparamagnetic nanoparticles was confirmed by fluorescence microscopy (FM), light microscopy (LM), transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM). Analysis of the FM, TEM and FE-SEM images indicated that the chitosan coated nanoparticles functionalized with a C12 aliphatic quaternary ammonium moiety (CS-qC12), captured the most BCG through a combination of ionic and hydrophobic interaction. TMC blended with PVA, to produce nanofibers crosslinked with genipin, were found to have the strongest interaction with BCG of the nanofibrous mats tested. These findings were corroborated by water contact angle measurements, which established that PVA was the least hydrophilic of the non-ionogenic polymers and had hydrogen bond donating groups only, factors influencing the cellular adhesive properties of affinity substrates. / AFRIKAANSE OPSOMMING: Tuberkulose (TB) is een van die wêreld se mees dodelikste siektes, met ‘n derde van die bevolking wat geïnfekteer is daarmee. Ten einde aktiewe TB te diagnoseer moet Mycobacterium tuberculosis (Mtb), die voorsakende patogeen in ʼn monster van die pasiënt se liggaamlike vloeistof, gevind en ïdentifiseer word. Veelvuldige monsters sal die diagnotiese opbrengs verhoog en monster volumes moet dus so groot as moontlik wees wat dikwels ʼn uitdaging vir pasiënte en veral jonger kinders kan bied. Alternatiewelik kan ʼn kleiner monster van die pasiënt vereis word indien daar ʼn manier was om die bakterieë in ʼn monster te konsentreer deur die gebruik van ʼn substraat wat ʼn affiniteit toon vir die patogeniese spesie. Polimere met ʼn intrinsieke sellulêre aktiwiteit, wek belangstelling as sodanige substraat, een synde die natuurlike polisakkaried, chitosan. In hierdie tesis is ʼn verskeidenheid gemodifiseerde chitosan afgeleides voorberei as potensiële Mtb-vaslegging substrate. Dit is gedoen deur chitosan te modifiseer met ʼn verskeidenheid funksionele groepe, gekies op grond van moontlike interaksies met die Mtb selwand, ten einde ʼn verskeidenheid kwaternêre ammonium soute van die chitosan polimeer te bekom. Die kwaternêre chitosan afgeleides is gevolglik gebruik om nano-substrate te sintetiseer wat ʼn affiniteit toon vir Mtb. Polimeer bedekte superparamagnetiese magnetiet nanopartikels (SPMNs) is gesintetiseer via ʼn in situ mede-neerslag metode, waarvolgens die gemodifiseerde chitosan polimere in staat is om met die metaal kern te chelaat. Polimeer nanovesels is ook geëlektrospin deur die elektrospin tegniek te gebruik. Die voorbereide afgeleide N-trimetielammonium chitosan chloried (TMC) is tot nanovesels geëlektrospin deur vermenging met geskikte nie-ionogeniese polimere, naamlik poliviniel-alkohol (PVA), polietilene-oksied (PEO), poliviniel-pirrolidoon (PVP) en poliakrielamied (PAM), wat vereis word ten einde nanovesels te produseer. Affiniteit studies is uitgevoer tussen die gemodifiseerde chitosan nano-substrate en die bacillus Calmette-Guérin (BCG) stam van Mycobacterium bovis, die verswakte Mtb-mimiek bakterieë vir evaluering as mycobakterium-vaslegging substrate. Die suksesvolle vasvang van BCG op die oppervlaktes van die verskillende gemodifiseerde chitosan nanovesels en gemodifiseerde chitosan bedekte SPMNs is bevestig deur fluoressensie mikroskopie (FM), lig mikroskopie (LM), transmissie elektron mikroskopie (TEM) en veld-emissie-skandering elektron mikroskopie (FE-SEM). Analise van die FM, TEM en FE-SEM beelde het getoon dat die chitosan bedekte nanopartikels met byvoeging van ʼn C12 alifatiese kwaternêre ammonium groep, die meeste BCG vasgevang het deur ʼn kombinasie van ioniese en hidrofobiese interaksie. TMC vermeng met PVA om nanovesels te vorm, gekruisbind met genipin, is gevind om die sterkste interaksie met BCG te toon. Hierdie bevindings is bevestig deur water-kontak-hoek-metings, wat getoon het dat PVA die minste hidrofilies van die nie-ionogeniese polimere was en slegs waterstof-binding skenkings groepe het, alles faktore wat die sellulêre bindingskwaliteite van affiniteit-substrate sal beïnvloed.
|
84 |
The growth of thin film epitaxial oxide-metal heterostructuresWang, Chao-Hsiung January 1998 (has links)
No description available.
|
85 |
Simulation of liquid crystals : disclinations and surface modificationDownton, Matthew January 2001 (has links)
No description available.
|
86 |
Electrochemical deposition, characterisation of metal films, and the modification of electrodes by near-field photolithographyMallett, Jonathan James January 2000 (has links)
No description available.
|
87 |
Characterization, Simulation, Analysis and Management of Hydraulic Properties of Greenhouse Plant Growth SubstratesChen Lopez, Jose Choc January 2011 (has links)
The greenhouse industry is facing significant challenges such as the demand for more efficient use of energy and natural resources and prevention of detrimental environmental impacts. Reducing negative environmental impacts can be achieved by utilizing recycled and environmentally friendly products and by optimizing the use of water and root zone substrates. New and advanced root zone substrates are currently tested as substitute for natural soils in greenhouse agriculture. They can be inert non-organic materials such as rockwool and perlite. These are mined products from the earth, and are difficult to dispose after use. Natural substrates such as peat are being consumed faster than being regenerated. A new potential substrate that consists of recycled foamed glass aggregates is considered an alternative, as it is environmentally friendly, non-toxic and disposable. Experiments with foamed glass aggregates and with foamed glass aggregate/coconut coir mixtures indicated that the yield of greenhouse tomatoes was not statistically significant different (α=0.05) when compared to rockwool. To investigate the potential application of recycled glass as a root zone substrate, physical and hydraulic properties were measured. For comparison, the same measurements were completed for rockwool, coconut coir, perlite, and PET/PE fibers as well as for a mixture of coconut coir and recycled glass. The water characteristics (WC) determined for each substrate exhibited distinct air entry potentials, which provided information for irrigation scheduling, water storage and aeration for optimum plant growth conditions. Coconut coir and rockwool exhibited a unimodal shaped water retention curve, while foamed glass aggregates and perlite exhibited bimodal shaped curves. The obtained substrate properties were used as input paramaters for HYDRUS- 2D/3D model to simulate water mass balance and matric potential distributions within a typical growth container of foamed glass aggregates. The simulated matric potential and water content distributions were compared to tensiometer measurements of matric potential in the foamed glass aggregates. The simulations compared favorably with laboratory experiments measured under controlled environmental conditions.
|
88 |
Nucleation, growth and acoustic properties of thin film diamondWhitfield, Michael David January 1999 (has links)
No description available.
|
89 |
Ion scattering studies of the surface and near surface region of metals and semiconductorsDixon, Richard John January 1998 (has links)
No description available.
|
90 |
Simulation studies of alkanes and surfactantsSmith, Paul Andrew January 2000 (has links)
No description available.
|
Page generated in 0.061 seconds