Spelling suggestions: "subject:"subtilis"" "subject:"subtile""
1 |
Analysis of Micro-Expressions based on the Riesz Pyramid : Application to Spotting and Recognition / Analyse des micro-expressions exploitant la pyramide de Riesz : application à la détection et à la reconnaissanceArango Duque, Carlos 06 December 2018 (has links)
Les micro-expressions sont des expressions faciales brèves et subtiles qui apparaissent et disparaissent en une fraction de seconde. Ce type d'expressions reflèterait "l'intention réelle" de l'être humain. Elles ont été étudiées pour mieux comprendre les communications non verbales et dans un contexte médicale lorsqu'il devient presque impossible d'engager une conversation ou d'essayer de traduire les émotions du visage ou le langage corporel d'un patient. Cependant, détecter et reconnaître les micro-expressions est une tâche difficile pour l'homme. Il peut donc être pertinent de développer des systèmes d'aide à la communication exploitant les micro-expressions. De nombreux travaux ont été réalisés dans les domaines de l'informatique affective et de la vision par ordinateur pour analyser les micro-expressions, mais une grande majorité de ces méthodes repose essentiellement sur des méthodes de vision par ordinateur classiques telles que les motifs binaires locaux, les histogrammes de gradients orientés et le flux optique. Étant donné que ce domaine de recherche est relativement nouveau, d'autres pistes restent à explorer. Dans cette thèse, nous présentons une nouvelle méthodologie pour l'analyse des petits mouvements (que nous appellerons par la suite mouvements subtils) et des micro-expressions. Nous proposons d'utiliser la pyramide de Riesz, une approximation multi-échelle et directionnelle de la transformation de Riesz qui a été utilisée pour l'amplification du mouvement dans les vidéos à l'aide de l'estimation de la phase 2D locale. Pour l'étape générale d'analyse de mouvements subtils, nous transformons une séquence d'images avec la pyramide de Riesz, extrayons et filtrons les variations de phase de l'image. Ces variations de phase sont en lien avec le mouvement. De plus, nous isolons les régions d'intérêt où des mouvements subtils pourraient avoir lieu en masquant les zones de bruit à l'aide de l'amplitude locale. La séquence d'image est transformée en un signal ID utilisé pour l'analyse temporelle et la détection de mouvement subtils. Nous avons créé notre propre base de données de séquences de mouvements subtils pour tester notre méthode. Pour l'étape de détection de micro-expressions, nous adaptons la méthode précédente au traitement de certaines régions d'intérêt du visage. Nous développons également une méthode heuristique pour détecter les micro-événements faciaux qui sépare les micro-expressions réelles des clignotements et des mouvements subtils des yeux. Pour la classification des micro-expressions, nous exploitons l'invariance, sur de courtes durées, de l'orientation dominante issue de la transformation de Riesz afin de moyenner la séquence d'une micro-expression en une paire d'images. A partir de ces images, nous définissons le descripteur MORF (Mean Oriented Riesz Feature) constitué d'histogrammes d'orientation. Les performances de nos méthodes sont évaluées à l'aide de deux bases de données de micro-expressions spontanées. / Micro-expressions are brief and subtle facial expressions that go on and off the face in a fraction of a second. This kind of facial expressions usually occurs in high stake situations and is considered to reflect a humans real intent. They have been studied to better understand non-verbal communications and in medical applications where is almost impossible to engage in a conversation or try to read the facial emotions or body language of a patient. There has been some interest works in micro-expression analysis, however, a great majority of these methods are based on classically established computer vision methods such as local binary patterns, histogram of gradients and optical flow. Considering the fact that this area of research is relatively new, much contributions remains to be made. ln this thesis, we present a novel methodology for subtle motion and micro-expression analysis. We propose to use the Riesz pyramid, a multi-scale steerable Hilbert transformer which has been used for 2-D phase representation and video amplification, as the basis for our methodology. For the general subtle motion analysis step, we transform an image sequence with the Riesz pyramid, extract and lifter the image phase variations as proxies for motion. Furthermore, we isolate regions of intcrcst where subtle motion might take place and mask noisy areas by thresholding the local amplitude. The total sequence is transformed into a ID signal which is used fo temporal analysis and subtle motion spotting. We create our own database of subtle motion sequences to test our method. For the micro-expression spotting step, we adapt the previous method to process some facial regions of interest. We also develop a heuristic method to detect facial micro-events that separates real micro-expressions from eye blinkings and subtle eye movements. For the micro-expression classification step, we exploit the dominant orientation constancy fom the Riesz transform to average the micro-expression sequence into an image pair. Based on that, we introduce the Mean Oriented Riesz Feature descriptor. The accuracy of our methods are tested in Iwo spontaneous micro-expressions databases. Furthermore, wc analyse the parameter variations and their effect in our results.
|
Page generated in 0.0386 seconds