• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chemical synthesis of heparan sulfate oligosaccharides for use in single molecule fluorescence analysis

Dalton, Charlotte January 2016 (has links)
Heparan sulfate (HS) is a cell-surface sulfated polysaccharide that binds to multiple proteins and has been implicated in cancer, viral infection and Alzheimer's disease. Due to the heterogeneity of HS, the structural requirements for protein binding are ill- defined. Chemical synthesis of structurally-defined HS oligosaccharides, which are tunable in terms of length, order of monosaccharides and sulfation pattern, is required for the investigation of HS-protein binding. Single molecule methods have been utilised in biophysics to study dynamic processes and can allow observation of rare events which would be 'averaged out' in ensemble measurements. Access to fluorescently labelled HS oligosaccharides should allow investigation of interactions with proteins at the single molecule level using methods such as single molecule FRET, providing a method complementary to NMR studies (ensemble) and X-ray crystallography (non-dynamic).This thesis presents the development of a method for the fluorescent labelling of a chemically synthesised HS disaccharide utilising a reducing-end amine tag. Analysis of the fluorescence properties of the labelled disaccharide at ensemble and single molecule level indicated no perturbation of the fluorophore when attached to the sugar. Fluorescence correlation spectroscopy measurements of the fluorescent HS disaccharide with the protein FGF-1 showed no binding, which is attributed to the low concentration (1 nM) of disaccharide required in the experiment. Additional work is presented in this thesis on the development of a method for atom-specific 13C labelling of HS oligosaccharides, which has been initiated by synthesis of a 13C labelled L-iduronate monosaccharide and a 13C labelled disaccharide. New strategies for the synthesis of HS oligosaccharides based on orthogonal thioglycoside-based glycosylations employing S-benzoxazolyl and S-thiazolyl donors have been investigated. Development of a chemoselective glycosylation strategy for HS oligosaccharide synthesis utilising a 'super-disarmed' [2.2.2] L-iduronic lactone is presented.
2

Synthetic approaches towards heparinoid related saccharides and derivatives

Broberg, Karl Rufus January 2011 (has links)
Heparin glycosaminoglycans mediate a range of biological events, including anticoagulation as well as a diversity of cell proliferation and differentiation processes. Heparin saccharides have been shown to act as inhibitors against angiogenesis and metastasis of tumour cells. This thesis describes work developing chemistry towards varying length oligosaccharide sequences with potential to offer variable sulfation patterns. The main synthetic components to this work were contribution to developing scalable syntheses of an orthogonally protected L-Iduronic acid unit and a differentially protected D-glucosamine unit. The synthetic work also evaluated a recently reported diazo transfer reagent, which allowed for earlier placement of azide protection over that of previously developed routes within the group. This provided a cheaper, more atom efficient route towards protected D-glucosamine building blocks. Glycosylation of the developed D-GlcN donor units with the L-Ido acceptor allowed the production of key disaccharides which facilitated an efficient iterative glycosylation strategy towards longer oligosaccharides, ultimately providing a differentially protected pentasaccharide. The project evaluated methods towards generating various dimeric heparin type systems through forming new O4 ether linkages between GlcN residues across various short linker fragments. The most successful of these dimerisations used a methallyl dichloride core which allowed for further derivatisation towards dihydroxylated species, the analysis of which highlighted some interesting proton NMR data. The final aspect of this project began development of chemistry towards non-reducing end-labelled oligosaccharide sequences by implementation of a masked aldehyde unit on the C4 hydroxyl of GlcN synthesised from the allylated GlcN precursor via dihydroxylation chemistry. Incorporation of this moiety (protected as a 1,2-dibenzyl glycol) within both a trisaccharide and a pentasaccharide was achieved. Further development of this chemistry should allow for late step oxidative cleavage to reveal the reactive aldehyde, potentially allowing for attachment of various amine functionalised fluorophores via reductive amination. Radiolabelling of such a species should also be possible through sodium borotritide reduction for example.

Page generated in 0.126 seconds