• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Uniaxial compressive fatigue behavior of ultra-high performance concrete reinforced with super-fine stainless wires

Dong, S., Wang, Y., Ashour, Ashraf, Han, B., Ou, J. 16 September 2020 (has links)
Yes / Super-fine stainless wires (SSWs) with micron diameter and large specific surface area can simultaneously strengthen and toughen reactive powder concrete (RPC) at low volume fraction, so SSW reinforced RPC composites have potential for developing infrastructures bearing fatigue load or with aseismic requirements. In this paper, the uniaxial compressive fatigue characteristics of such composites under high stress levels were investigated, and the modification mechanisms of SSWs to RPC were revealed through failure state and microstructure analyses. The results showed that incorporating only 0.5 vol.% SSWs into RPC enables the fatigue life and energy dissipation capacity to increase by 252.0% and 262.3%, meanwhile, the fatigue limit strength of composites at the failure probability of 50% reaches up to 76.6% of static uniaxial compressive strength, due to the improvement effect on microstructure compactness, inhibiting effect on flaw initiation, and the ability to convert single main crack into radial multiple micro cracks centered on SSWs. Furthermore, the average maximum fatigue strain and residual strain of composites are improved by 73.7% and 87.2%, respectively, which can be ascribed to the bridging, debonding and being pulled-off effect of SSWs. It can be therefore concluded that the incorporation of SSWs endows RPC with excellent fatigue performance, thus further enlarging the application of composites. / The authors would like to thank the National Science Foundation of China (51908103 and 51978127), and the China Postdoctoral Science Foundation (2019M651116) for providing funding to carry out this investigation.
2

Developing a sustainable ultra-high performance concrete using seawater and sea-sand in combination with super-fine stainless wires

Yu, F., Dong, S., Li, L., Ashour, Ashraf, Ding, S., Han, B., Ou, J. 09 March 2023 (has links)
Yes / Utilizing seawater and sea-sand for producing ultra-high performance concrete (UHPC) can substantially reduce raw materials costs and alleviate the current freshwater and river sand resources shortage in coastal and marine areas. However, the corrosion risk to reinforcing fibers inside UHPC caused by chlorides in seawater and sea-sand cannot be ignored. In this study, a new type of sustainable UHPC composed of seawater and desalinated sea-sand (UHPSSC) reinforced with stainless profile, super-fine stainless wire (SSW) was developed. Its mechanical properties and chloride content were studied. The research results show that SSWs do not rust after immersion in seawater. The flexural and compressive strengths of UHPSSC incorporating 1.5% SSWs are 13.8MPa and 138.6MPa, respectively, and the flexural toughness of UHPSSC is increased by 428.9%, reaching the basic mechanical requirements of UHPC. The high specific surface area of SSW and enrichment of silica fume on its surface enhance the interfacial bond between fiber and matrix, further promoting the full play of the SSWs’ reinforcing mechanisms as proved by the decrease of the Ca/Si ratio at the SSW surface. The C-S-H gels with a high Ca/Si ratio within the ITZ as well as Friedel’s salt are conducive to immobilize chlorides, blocking the migration of chlorides through the matrix and further mitigating the risk of long-term chloride corrosion of SSWs. Overall, utilizing seawater and desalinated sea-sand in combination with SSWs can produce UHPC with improved strength and toughness, making it a suitable choice for applications where high durability and long-term mechanical performance is required.
3

Fracture and self-sensing characteristics of super-fine stainless wire reinforced reactive powder concrete

Dong, S., Dong, X., Ashour, Ashraf, Han, B., Ou, J. 11 June 2019 (has links)
Yes / Super-fine stainless wire (SSW) can not only form widely distributed enhancing, toughening and conductive network in reactive powder concrete (RPC) at low dosage level, but also improve weak interface area and refine cracks due to its micron scale diameter and large specific surface. In addition, the crack resistance zone generated by SSWs and RPC matrix together has potential to further enhance the fracture properties of composites. Therefore, fracture and self-sensing characteristics of SSW reinforced RPC composites were investigated in this paper. Experimental results indicated that adding 1.5 vol. % of SSW leads to 183.1% increase in the initial cracking load of RPC specimens under three-point bending load. Based on two parameter fracture model calculations, an increase of 203.4% in fracture toughness as well as an increase of 113.3% in crack tip opening displacement of the composites reinforced with 1.5% SSWs are achieved. According to double-K fracture model calculations, the initiation fracture toughness and unstable fracture toughness of the composites are enhanced by 185.2% and 179.2%, respectively. The increment for fracture energy of the composites reaches up to 1017.1% because of the emergence of blunt and tortuous cracks. The mixed mode Ⅰ-Ⅱ fracture toughness of the composites is increased by 177.1% under four-point shearing load. The initial angle of mixed mode Ⅰ-Ⅱ cracks of the composites decreases with the increase of SSW content. The initiation and propagation of cracks in the composites can be monitored by their change in electrical resistivity. The excellent fracture toughness of the composites is of great significance for the improvement of structure safety in serviceability limit states, and the self-sensing ability of the composites can also provide early warning for the degradation of structure safety. / National Key Research and Development Program of China (2018YFC0705601), the National Science Foundation of China (51578110), China Postdoctoral Science Fundation (2019M651116) and the Fundamental Research Funds for the Central Universities in China (DUT18GJ203).
4

Flexural toughness and calculation model of super-fine stainless wire reinforced reactive powder concrete

Dong, S., Zhou, D., Ashour, Ashraf, Han, B., Ou, J. 11 July 2019 (has links)
Yes / As a type of excellent reinforcing filler, super-fine stainless wire (SSW) can form widely distributed network in reactive powder concrete (RPC) to transfer crack tip stresses as well as inhibit the initiation and propagation of cracks, leading to significant improvement of flexural toughness of RPC. In this paper, the flexural toughness of RPC beams and plates reinforced with 1% and 1.5% by vol. of SSWs was investigated, and its calculation model was established according to the composite material theory. Experimental results showed that the flexural toughness of unnotched beams fabricated with RPC containing 1.5% SSWs is 146.5% higher than that of control RPC without SSWs according to load-deflection relationships. The equivalent flexural strength of notched RPC beams is enhanced by 80.0% as SSW content increases from 1% to 1.5%. The limitation ability of SSWs on crack mouth opening can be used to evaluate the flexural toughness of composites. An addition of 1.5% SSWs leads to 201.9% increase of flexural toughness of RPC plates in accordance with load-deflection relationships. The calculation model based on the composite material theory can accurately describe the toughening effect of SSWs on RPC beams and plates. The enhancement of flexural toughness of RPC caused by SSWs is beneficial for improving the safety of structures as well as broadening the engineering applications of composites. / National Key Research and Development Program of China (2018YFC0705601) and China Postdoctoral Science Fundation (2019M651116).

Page generated in 0.0654 seconds