• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical modeling of supercavitating and surface-piercing propellers

Young, Yin Lu. January 2002 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2002. / Vita. Includes bibliographical references. Available also from UMI Company.
2

Numerical modeling of supercavitating and surface-piercing propellers

Young, Yin Lu 10 May 2011 (has links)
Not available / text
3

Trajectory Optimization Strategies For Supercavitating Vehicles

Kamada, Rahul 07 December 2004 (has links)
Supercavitating vehicles are characterized by substantially reduced hydrodynamic drag with respect to fully wetted underwater vehicles. Drag is localized at the nose of the vehicle, where a cavitator generates a cavity that completely envelops the body. This causes the center of pressure to be always ahead of the center of mass, thus violating a fundamental principle of hydrodynamic stability. This unique loading configuration, the complex and non-linear nature of the interaction forces between vehicle and cavity, and the unsteady behavior of the cavity itself make the control and maneuvering of supercavitating vehicles particularly challenging. This study represents an effort towards the evaluation of optimal trajectories for this class of underwater vehicles, which often need to operate in unsteady regimes and near the boundaries of the flight envelope. Flight trajectories and maneuvering strategies for supercavitating vehicles are here obtained through the solution of an optimal control problem. Given a cost function and general constraints and bounds on states and controls, the solution of the optimal control problem yields the control time histories that maneuver the vehicle according to a desired strategy, together with the associated flight path. The optimal control problem is solved using the direct transcription method, which does not require the derivation of the equations of optimal control and leads to the solution of a discrete parameter optimization problem. Examples of maneuvers and resulting trajectories are given to demonstrate the effectiveness of the proposed methodology and the generality of the formulation.
4

An integrated approach to the design of supercavitating underwater vehicles

Ahn, Seong Sik 09 May 2007 (has links)
A supercavitating vehicle, a next-generation underwater vehicle capable of changing the paradigm of modern marine warfare, exploits supercavitation as a means to reduce drag and achieve extremely high submerged speeds. In supercavitating flows, a low-density gaseous cavity entirely envelops the vehicle and as a result the vehicle is in contact with liquid water only at its nose and partially over the afterbody. Hence, the vehicle experiences a substantially reduced skin drag and can achieve much higher speed than conventional vehicles. The development of a controllable and maneuvering supercavitating vehicle has been confronted with various challenging problems such as the potential instability of the vehicle, the unsteady nature of cavity dynamics, the complex and non-linear nature of the interaction between vehicle and cavity. Furthermore, major questions still need to be resolved regarding the basic configuration of the vehicle itself, including its control surfaces, the control system, and the cavity dynamics. In order to answer these fundamental questions, together with many similar ones, this dissertation develops an integrated simulation-based design tool to optimize the vehicle configuration subjected to operational design requirements, while predicting the complex coupled behavior of the vehicle for each design configuration. Particularly, this research attempts to include maneuvering flight as well as various operating trim conditions directly in the vehicle configurational optimization. This integrated approach provides significant improvement in performance in the preliminary design phase and indicates that trade-offs between various performance indexes are required due to their conflicting requirements. This dissertation also investigates trim conditions and dynamic characteristics of supercavitating vehicles through a full 6 DOF model. The influence of operating conditions, and cavity models and their memory effects on trim is analyzed and discussed. Unique characteristics are identified, e.g. the cavity memory effects introduce a favorable stabilizing effect by providing restoring fins and planing forces. Furthermore, this research investigates the flight envelope of a supercavitating vehicle, which is significantly different from that of a conventional vehicle due to different hydrodynamic coefficients as well as unique operational conditions.

Page generated in 0.0694 seconds