1 |
The Effects of Mixing Variables on Settling Rates and Particle Size Distribution of Dicalcium Phosphate Made by the Hydrolysis of Monocalcium PhosphateDokken, Marvin Noble 01 August 1942 (has links)
Summary: A process is under investigation for the manufacture of dicalcium phosphate by the hydrolosis of concentrated superphosphate containing recycled monocalcium phosphate. The hydrolysis also results in the formation of an aqueous solution of monocalcium phosphate and free phosphoric acid. The phases are separated, followed by washing and drying of the solid dicalcium phosphate. The wash water is used in the hydrolyzer. The solution is returned to the superphosphate production step, where phosphate rock and additional phosphoric acid are added, and where water is evaporated to form the solid superphosphate.
Pilot plant results have indicated that filtration rates vary widely under almost identical mixing conditions, presumably due to variations in particle size ranges. It was thought worthwhile, therefore, to study the effects of different mixing variables on the relative particle sizes as indicated by the settling rates of the mixture.
|
2 |
The Effects of Mixing Variables on Settling Rates and Particle Size Distribution of Dicalcium Phosphate Made by the Hydrolysis of Monocalcium PhosphateDokken, Marvin Noble 01 August 1942 (has links)
Summary: A process is under investigation for the manufacture of dicalcium phosphate by the hydrolosis of concentrated superphosphate containing recycled monocalcium phosphate. The hydrolysis also results in the formation of an aqueous solution of monocalcium phosphate and free phosphoric acid. The phases are separated, followed by washing and drying of the solid dicalcium phosphate. The wash water is used in the hydrolyzer. The solution is returned to the superphosphate production step, where phosphate rock and additional phosphoric acid are added, and where water is evaporated to form the solid superphosphate.Pilot plant results have indicated that filtration rates vary widely under almost identical mixing conditions, presumably due to variations in particle size ranges. It was thought worthwhile, therefore, to study the effects of different mixing variables on the relative particle sizes as indicated by the settling rates of the mixture.
|
Page generated in 0.1088 seconds