• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 22
  • 10
  • 8
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 147
  • 26
  • 23
  • 22
  • 19
  • 18
  • 15
  • 15
  • 14
  • 13
  • 12
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Adhesion Studies of Polymers: (I) Autohesion of Ethylene/1-Octene Copolymers; (II) Method Development and Adhesive Characterization of Pressure Sensitive Adhesive in Paper Laminates for Postage Stamps

Yang, Hailing 08 May 2006 (has links)
Autohesion is defined as the resistance to separation of two bonded identical films that have been joined together for a period of time under a given temperature and pressure. Studies on the autohesion phenomenon can provide fundamental insights into the physical processes of adhesive bond and failure, as well as the practical engineering issues such as crack healing, elastomer tack, polymer fusion, self-healing, and polymer welding. In the first part of this dissertation work, four ethylene/1-octene (EO) copolymers were used in the present study consisting of molecules with linear polyethylene backbone to which hexyl groups are attached at random intervals. These copolymers have similar number-average molecular weight (Mn) and polydispersity, but different 1-octene content. These hexyl groups act as the short branches and hinder the crystallization, reduce density to some extent in the solid state, lower the melting temperature, and decrease the stiffness of the bulk materials. A full understanding of the autohesion behavior of the ethylene/1-octene copolymers involves investigations at three different length scales: 1) the molecular scale which controls the interfacial structure; 2) the mesoscopic or microscopic scale which can provide information on the formation of interfaces and on how the energy is dissipated during a fracture process; and 3) the macroscopic scale at which the mechanical properties such as fracture energy can be obtained for a particular test geometry. In the present study, the effects of the branch content on the formation and fracture of the interface of these ethylene/1-octene assemblies were evaluated at the bonding temperatures (Tb) and bonding times (tb). The correlation among these three length scales was also investigated and modeled. The adhesion strength of these symmetric interfaces of EO copolymers was investigated by T-peel fracture tests. The fracture of the interface is an irreversible entropy creating process which involved a substantial amount of energy dissipation. The results of such mechanical tests with respect to the bonding temperature (Tb), bonding time (tb) and peel rate indicated this energy dissipation is the result of a complicated interplay between the ability of the interface to transfer stress and its plastic and viscoelastic deformation properties. When Tb is much higher than the characteristic temperature (Tc), the interfaces were completely healed and cohesive failure was observed in T-peel tests. In this case, the fracture strength decreased with increasing branch content. In contrast, when Tb is very close to Tc, the fracture strength showed an increase with the branch content with either interfacial failure or cohesive failure being observed depending on the branch content and Tb. At higher peel rates, it is observed that higher peel energies are required to fracture the surfaces. Transmission electron microscopy (TEM) showed that the interfacial/interphase structure changed from amorphous to crystalline with an increase in the Tb. The results from the bonding time effect studies showed that the peel energy is proportional to tb1/2 regardless of Tb. But the branch content and the Tb play an important role on the seal rate. Thus, higher seal rate was found for higher Tb and higher branch content. These results also suggest that the autohesion of ethylene/1-octene copolymers are strongly associated with the interactions of melted chains. The chain compositions of these Zeigler-Natta EO copolymers are highly heterogeneous with the branches concentrated in the lower molecular weight portion. Long linear chain segments could form large, well-ordered crystals that provide strong anchors for the tie molecules and therefore determine the density of inter-crystalline links. Short chains with lots of branches could behave as protrusions along the chain to obstruct chain disentanglement and limit a chain from sliding through a crystal. Due to these reasons, the short chains with branches would contribute much less than the long linear chains to the full peel strength after complete sealing. However, higher peel strengths could be obtained only at the higher temperatures or longer bonding times at which the long linear chains begin to melt and diffuse across the interface. On the other hand, the higher branch content samples have the lower crystallinity and could obtain the higher chain mobility at the lower bonding temperatures and with shorter bonding times. Therefore, higher seal strength was observed for the higher branch content samples at lower Tb. Following T-peel fracture tests of ethylene/1-octene copolymer assemblies which showed interfacial failures, the fractured surfaces were investigated by using Atomic Force Microscopy (AFM) and characterized by fractal analysis together with the original films. The AFM images showed strong dependence on the peel rate and branch content. Quantitatively, the fractal analyses demonstrated fractal characteristics at the different finite scales. Two regimes showing fractal features were identified for each surface. In regime I (low magnifications) the fracture test did not change the fractal dimensions much. But there were significant changes in regime II before welding and after T-peel fracture tests. The length scale that separated these two regimes is very close to the size of lamellar structures. The characteristic sizes at which the fractal characteristics emerge were shown to appear at larger scales for surfaces fractured at higher peel rates. This suggests that the appearance of fractal behavior at larger scales requires higher fracture energies. The characteristic sizes and fractal dimensions were shown to depend on the molecular structure. Because the fractal analysis suggests at least some crystalline lamellae on the surfaces still existed during T-peel fracture tests, a "Stitch-welding" has been therefore proposed as the autohesion mechanism in which only chains in the amorphous portions could inter-diffuse. In the second part of this dissertation work, a multi-layer lap-shear geometry has been designed and proven as a reliable testing method in evaluation of the dynamical mechanical properties of polyacrylic pressure sensitive adhesive (PSA) in paper lamination for postage stamp applications. In-situ testing of four different PSA stamp laminates constructed by laminating water-based polyacrylic PSAs to the stamp face papers were carried out using a dynamic mechanical analyzer (DMA) in the temperature range from -50 to 60 oC at frequencies 0.1, 1, 10, and 100 Hz. This geometry requires the tension mode on the DMA, but the results which were recorded as tensile properties were converted to shearing properties of the PSA layers in the laminate. The effect of the thickness (layers of laminates) on the dynamical mechanical properties has been studied and the results suggested that a multi-layer geometry with 5-10 layers could be an appropriate structure to produce enhanced responses. Therefore, the geometry with 8-layer laminates was used for frequency sweep/isothermal temperature and frequency sweep/temperature step tests. The results showed three relaxation responses that is, glassy, transition, and flow regions with respect to the frequencies and temperatures. These results also implied the viscoelastic characteristics of these PSA products. The tensile properties of the face papers were also tested using the same parameters as those of the multi-layer geometry. Significant differences were found between the shearing behaviors of the multi-layer geometry and the tensile behaviors of the elastic face paper. This suggests that the tensile deformation of the face paper in the multi-layer geometry could be ignored and the elastic paper did not contribute to the shearing properties of the PSA layers. Time-temperature superposition curves have been produced with reference temperature set at 23 oC, which can be used to predict the long term and short term performances of these samples at this temperature. This method can be utilized as a standard testing method on the PSA adhesives in the laminate form. In addition to the dynamic mechanical properties, it can also be developed to be a general standard method on testing the rheological properties of adhesives, polymer melts and other viscous materials. / Ph. D.
112

Investigation on the Mechanisms of Elastomechanical Behavior of Resilin

Khandaker, Md Shahriar K. 08 December 2015 (has links)
Resilin is a disordered elastomeric protein and can be found in specialized regions of insect cuticles. Its protein sequence, functions and dynamic mechanical properties vary substantially across the species. Resilin can operate across the frequency range from 5 Hz for locomotion to 13 kHz for sound production. To understand the functions of different exons of resilin, we synthesize recombinant resilin-like hydrogels from different exons, and investigate the water content and dynamic mechanical properties, along with estimating surface energies relevant for adhesion. The recombinant resilin-like hydrogel has 80wt% water and does not show any sign of tack even though it satisfies the Dahlquist criterion. Finally, doubly shifted dynamic moduli master curves are developed by applying the time-temperature concentration superposition principle (TTCSP), and compared to results obtained with natural resilin from locusts, dragonflies and cockroaches. The resulting master curves show that the synthetic resilin undergoes a prominent transition, though the responsible mechanism is unclear. Possible explanations for the significant increase in modulus include the formation of intramolecular hydrogen bonds, altered structural organization, or passing through a glass transition, all of which have been reported in the literature for polymeric materials. Results show that in nature, resilin operates at a much lower frequency than this glass transition frequency at room temperature. Moreover, recombinant resilins from different clones have comparable resilience with natural resilin, though the modulus is around 1.5 decades lower. Results from the clones with and without chitin binding domains (ChBD) indicate that the transition for the clone without ChBD occurs at lower frequencies than for those with the ChBD, perhaps due to the disordered nature of the clone without ChBD. Atomistic molecular modeling is applied on the repetitive motifs of resilin and different elastomeric proteins to better understand the relationship between elastomeric behavior and amino acid sequences. Results show that the motifs form a favorable bent conformation, likely enabled by glycine's lack of steric hindrance and held in place through intramolecular hydrogen bonds. During Steered Molecular Dynamic (SMD) pulling of these motifs, the hydrogen bonds break and they reform again when the peptides are released to move freely, returning to similar bent conformations. The transition seen in the master curves of recombinant resilins might be due to either these intramolecular hydrogen bonds or to glass transition behavior, though evidence indicates that the transition probably due to the glass transition. What we learned from the synthesized recombinant resilin and simulating the repetitive motifs of resilin may be applicable to the biology and mechanics of other elastomeric biomaterials, and may provide deeper understanding of their unique properties. / Ph. D.
113

Methods and Tools for Parametric Modeling and Simulation of Microsystems based on Finite Element Methods and Order Reduction Technologies

Kolchuzhin, Vladimir 27 May 2010 (has links) (PDF)
In der vorliegenden Arbeit wird die Entwicklung eines effizienten Verfahrens zur parametrischen Finite Elemente Simulation von Mikrosystemen und zum Export dieser Modelle in Elektronik- und Systemsimulationswerkzeuge vorgestellt. Parametrische FE-Modelle beschreiben den Einfluss von geometrischen Abmessungen, Schwankungen von Materialeigenschaften und veränderten Umgebungsbedingungen auf das Funktionsverhalten von Sensoren und Aktuatoren. Parametrische FE-Modelle werden für die Auswahl geeigneter Formelemente und deren Dimensionierung während des Entwurfsprozesses in der Mikrosystemtechnik benötigt. Weiterhin ermöglichen parametrische Modelle Sensitivitätsanalysen zur Bewertung des Einflusses von Toleranzen und Prozessschwankungen auf die Qualität von Fertigungsprozessen. In Gegensatz zu üblichen Sample- und Fitverfahren wird in dieser Arbeit eine Methode entwickelt, welche die Taylorkoeffizienten höherer Ordnung zur Beschreibung des Einflusses von Designparametern direkt aus der Finite-Elemente- Formulierung, durch Ableitungen der Systemmatrizen, ermittelt. Durch Ordnungsreduktionsverfahren werden die parametrischen FE-Modelle in verschiedene Beschreibungssprachen für einen nachfolgenden Elektronik- und Schaltungsentwurf überführt. Dadurch wird es möglich, neben dem Sensor- und Aktuatorentwurf auch das Zusammenwirken von Mikrosystemen mit elektronischen Schaltungen in einer einheitlichen Simulationsumgebung zu analysieren und zu optimieren. / The thesis deals with advanced parametric modeling technologies based on differentiation of the finite element equations which account for parameter variations in a single FE run. The key idea of the new approach is to compute not only the governing system matrices of the FE problem but also high order partial derivatives with regard to design parameters by means of automatic differentiation. As result, Taylor vectors of the system’s response can be expanded in the vicinity of the initial position capturing dimensions and physical parameter. A novel approaches for the parametric MEMS simulation have been investigated for mechanical, electrostatic and fluidic domains in order to improve the computational efficiency. Objective of reduced order modeling is to construct a simplified model which approximates the original system with reasonable accuracy for system level design of MEMS. The modal superposition technique is most suitable for system with flexible mechanical components because the deformation state of any flexible system can be accurately described by a linear combination of its lowest eigenvectors. The developed simulation approach using parametric FE analyses to extract basis functions have been applied for parametric reduced order modeling. The successful implementation of a derivatives based technique for parameterization of macromodel by the example of microbeam and for exporting this macromodel into MATLAB/Similink to simulate dynamical behavior has been reported.
114

Methods and Tools for Parametric Modeling and Simulation of Microsystems based on Finite Element Methods and Order Reduction Technologies

Kolchuzhin, Vladimir 12 May 2010 (has links)
In der vorliegenden Arbeit wird die Entwicklung eines effizienten Verfahrens zur parametrischen Finite Elemente Simulation von Mikrosystemen und zum Export dieser Modelle in Elektronik- und Systemsimulationswerkzeuge vorgestellt. Parametrische FE-Modelle beschreiben den Einfluss von geometrischen Abmessungen, Schwankungen von Materialeigenschaften und veränderten Umgebungsbedingungen auf das Funktionsverhalten von Sensoren und Aktuatoren. Parametrische FE-Modelle werden für die Auswahl geeigneter Formelemente und deren Dimensionierung während des Entwurfsprozesses in der Mikrosystemtechnik benötigt. Weiterhin ermöglichen parametrische Modelle Sensitivitätsanalysen zur Bewertung des Einflusses von Toleranzen und Prozessschwankungen auf die Qualität von Fertigungsprozessen. In Gegensatz zu üblichen Sample- und Fitverfahren wird in dieser Arbeit eine Methode entwickelt, welche die Taylorkoeffizienten höherer Ordnung zur Beschreibung des Einflusses von Designparametern direkt aus der Finite-Elemente- Formulierung, durch Ableitungen der Systemmatrizen, ermittelt. Durch Ordnungsreduktionsverfahren werden die parametrischen FE-Modelle in verschiedene Beschreibungssprachen für einen nachfolgenden Elektronik- und Schaltungsentwurf überführt. Dadurch wird es möglich, neben dem Sensor- und Aktuatorentwurf auch das Zusammenwirken von Mikrosystemen mit elektronischen Schaltungen in einer einheitlichen Simulationsumgebung zu analysieren und zu optimieren. / The thesis deals with advanced parametric modeling technologies based on differentiation of the finite element equations which account for parameter variations in a single FE run. The key idea of the new approach is to compute not only the governing system matrices of the FE problem but also high order partial derivatives with regard to design parameters by means of automatic differentiation. As result, Taylor vectors of the system’s response can be expanded in the vicinity of the initial position capturing dimensions and physical parameter. A novel approaches for the parametric MEMS simulation have been investigated for mechanical, electrostatic and fluidic domains in order to improve the computational efficiency. Objective of reduced order modeling is to construct a simplified model which approximates the original system with reasonable accuracy for system level design of MEMS. The modal superposition technique is most suitable for system with flexible mechanical components because the deformation state of any flexible system can be accurately described by a linear combination of its lowest eigenvectors. The developed simulation approach using parametric FE analyses to extract basis functions have been applied for parametric reduced order modeling. The successful implementation of a derivatives based technique for parameterization of macromodel by the example of microbeam and for exporting this macromodel into MATLAB/Similink to simulate dynamical behavior has been reported.
115

A Numerical Approach for Wind Tunnel Noise Control / En numerisk ansats för aktiv bullerdämpning av vindtunnel

Dall, Hampus, Palm, Robert January 2021 (has links)
A wind tunnel from the 1950s located in Bromma, Stockholm, once used for military research is today used for commercial activities. Today the tunnel is used for indoor wingsuit flight and the facility has an interest in reducing the overall noise generated by the tunnel. Acoustic measurements indicate noise problems in the 50 Hz range. A 3D and a 2D model was structured with physical measured dimensions of the wind tunnel for simulations.Results indicate that a 37 dB decrease of the second higher order azimuthal spinning mode was achievable with the same number of monopole anti-sources as fan blades with each individual monopole modeling an enclosed loudspeakers. This acoustic mode was identified as the most problematic due to the cut-on frequency for the geometry coinciding with the fundamental blade pass frequency of the fan source during normal operating conditions. / På 1950-talet byggdes en vindtunnel i Bromma, Stockholm kallad "LT1". Vindtunneln användes då för militär utveckling för bland annat flygförsvaret. Idag drivs den efter en period utan användning kommersiellt för flygning av ekorrdräkt så kallad "Wingsuit" inomhus. Området kring tunneln har kommersialierats under tiden den var ur drift och omgivande verksamheter påverkas av ljud från vindtunnelns verksamhet varför tunnelns verksamhet söker förbättringsmöjligheter avseende bullerdämpning. Akustiska mätningar i och utanför tunneln indikerar ett problemområde kring frekvensen 50 Hz som härstammar från den stora fläkt som skapar flödet i tunneln. Vindtunneln modellerades i 3D och 2D med hjälp av fysiskt uppmätta dimensioner på plats. Modellerna användes sedan för att kunna numeriskt simulera och beräkna möjligheten att dämpa ljudet från fläkten med hjälp av aktiv kontroll. Resultaten indikerar att en 37 dB ljudreduktion är möjlig av andra ordningens högre akustiska snurrande mod. Detta var möjligt att uppnå med lika många anti-källor modellerade som monopoler vilket motsvarar slutna högtalare, som fläktblad. Denna akustiska mod identifierades som den mest problematiska eftersom cut-on frekvensen för tunnelns geometri sammanfaller med den fundamentala bladpass-frekvensen för fläkten under normal drift.
116

ANA-PSp: um sistema computacional para análise aeroelástica de pontes suspensas por modelos matemáticos reduzidos. / Ana-PSp: a computational system for aeroelastic analysis of suspended bridges for reduced mathematical models.

Kreis, Eri Sato 22 November 2007 (has links)
As características arquitetônicas e o desempenho estrutural de pontes suspensas, estaiadas ou pênseis, têm determinado a sua crescente utilização em obras de arte destinadas a vencer grandes vãos. Essa utilização crescente que ocorreu no mundo nas últimas décadas se repete agora nos últimos anos no país. Várias dessas obras estão em execução e em projeto. Um dos aspectos relevantes na análise estrutural das pontes suspensas é o de seu comportamento quando submetidas à ação do vento. Apresenta-se o sistema computacional ANA-PSp desenvolvido especialmente para o estudo do movimento de tabuleiros de pontes suspensas sujeitas a esforços aeroelásticos e aerodinâmicos. Esse sistema computacional formado por um conjunto de subsistemas, é elaborado para a análise aeroelástica de pontes suspensas sob a ação de vento e permite análises paramétricas extensas dos fenômenos de drapejamento (flutter) e de martelamento (buffeting). A discretização da estrutura é efetuada pelo método dos elementos finitos e a redução dos graus de liberdade é realizada por superposição modal com modos selecionados que melhor descrevem os movimentos do tabuleiro. Utiliza-se modelo matemático reduzido para a análise multimodal no domínio do tempo e da freqüência. A velocidade crítica ou velocidade de drapejamento é determinada por procedimento de autovalores complexos com a obtenção de freqüências e taxas de amortecimentos modais para várias velocidades do vento. Adicionalmente, o fenômeno do drapejamento é estudado por séries temporais de respostas de coordenadas generalizadas e de deslocamentos selecionados e por análise espectral dessas séries temporais, que permitem a verificação das características de vibração do tabuleiro da ponte no domínio da freqüência. O estudo do fenômeno de martelamento considera esforços aeroelásticos determinísticos e esforços aerodinâmicos estocásticos e apresentam-se resultados em espectros de potência de deslocamentos e em desvios padrão de deslocamentos ao longo do tabuleiro. Para validar o sistema ANA-PSp, apresentam-se estudos de caso para a ponte estaiada da Normandia, para a ponte pênsil colapsada de Tacoma Narrows e para a ponte estaiada projetada, mas não executada, sobre o Rio Tietê e localizada na extremidade do complexo viário Jacu-Pêssego. / The architectonic characteristics and the structural performance of suspension bridges and cable-stayed bridges have determined their growing use on large span bridges. This growing usage, which has occurred world-wide during the last decades, is now being repeated in Brazil during the last few years. Several such bridges are presently either undergoing construction or being designed. One of the outstanding aspects in the structural analysis of suspension bridges is their behavior under wind action. This paper presents the computer system ANA-PSp, specially developed for studying the movement of suspended bridge decks under aeroelastic and aerodynamic forces. This computer system is formed by a group of subsystems and is created for aeroelastic analysis of suspended bridges under wind action. It allows extended parametric analyses of the flutter and the buffeting phenomena. Structural discretization is done by the finite element method and the reduction of degrees of freedom is obtained by modal superposition of the selected modes which best describe the deck movements. A reduced mathematical model is used for the multimodal analysis in the time and frequency domains. Critical velocity or flutter velocity is determined by a procedure of complex eigenvalues which obtains frequencies and damping ratios for different wind speeds. Additionally, the flutter phenomenon is studied by temporal series of answers to generalized coordinate responses and of selected displacements by spectral analysis of such temporal series, which allow us to verify the characteristics of the vibrations of the bridge deck in the frequency domain. The study of the buffeting phenomenon considers deterministic aeroelastic and stochastic aerodynamic forces. The paper presents results in displacement power spectra and in the standard deviation of displacements along the deck. In order to validate system ANA-PSp, case studies are presented for the cable-stayed Ponte de Normandie in Le Havre (France), for the collapsed suspension bridge on Tacoma Narrows and for the cable-stayed bridge, already designed but not built, on Tietê River, located at one end of the highway complex Jacu-Pêssego (São Paulo, SP, Brazil).
117

Des géographies Two-Spirit? Du concept de trans-Nation-alités pour articuler l’imbrication entre identité, communauté et territoire

Lépine-Dubois, Alexe 07 1900 (has links)
No description available.
118

Spectral Shape Division Multiplexing (SSDM): Apparatus, Transmitter, Receiver and Detection

Holguín-Sánchez, Fausto Daniel 01 June 2012 (has links)
Wireless communication companies require to use the frequency spectrum to operate. Both frequency licenses and infrastructure to reuse frequencies are costly resources subject to increasing demand. This work introduces a novel multiplexing method that saves spectrum called Spectral Shape Division Multiplexing (SSDM). Under certain configurations, SSDM displays higher flexibility and throughput than other spectrally efficient methods. SSDM defines the structure of a wireless multi-carrier by software. It is similar to Orthogonal Frequency Division Multiplexing (OFDM) in that both use overlapped sub-carriers to make efficient use of allocated spectrum. However, SSDM has several advantages. Where OFDM organizes sub-carriers orthogonally, SSDM allows arbitrary frequency steps enabling higher spectral efficiency. Similarly, while OFDM and other spectrally efficient methods use sinusoidal pulse forms, SSDM can use non-standard pulses providing a greater control of the carrier. In this thesis, a SSDM transceiver is implemented to reduce the spectrum utilization. SSDM presents an increase in spectral efficiency of 20% average with respect to OFDM. The cost of this gain is higher computational speed and signal to noise ratio. The mathematical models and possible architecture for an SSDM system with sinusoidal pulses is developed. The modem is compared with other spectrally efficient methods. Similarly, the trade-offs between spectral efficiency, bit-error rates, dimension of the carrier and sub-carrier spacing are subject of analysis.
119

Segmentation, recalage et reconstruction 3D de données.<br />Traitement d'images médicales et industrielles.

Daul, Christian 29 September 2008 (has links) (PDF)
Le travail de recherche relaté dans ce manuscrit présente mes activités en traitement d'images que j'ai menées successivement dans trois organismes, à savoir le Laboratoire des Sciences de l'Image, de l'Informatique et de la Télédétection (LSIIT, UMR CNRS/Université Louis Pasteur de Strasbourg), l'Institut für Techno- und Wirtschaftsmathematik'' (Fraunhofer Institut, Kaiserslautern, Allemagne) et le Centre de Recherche en Automatique de Nancy (CRAN, UMR CNRS/Nancy Université). D'un point de vue scientifique, mes principales activités en traitement d'images concernent la segmentation d'images dont le contenu, relativement complexe, requiert des algorithmes utilisant des connaissances a priori liées aux objets à segmenter (contours actifs, méthode s'inspirant de la transformée de Hough. Le recalage de donnée 2D ou 3D et monomodales ou multimodales est un autre aspect scientifique caractérisant le travail décrit ici. Ces thèmes de recherche, ainsi que des méthodes de reconstruction et/ou de superposition de données 3D ont conduit à des solutions originales dans le cadre de problèmes industriels (reconstruction 3D de pièces manufacturées pour une mesure dimensionnelle et classification de surfaces en fonction de leur teinte et texture) ou médicaux (diagnostic précoce du cancer du sein via la reconstruction du foyer de microcalcifications, positionnement de patients en radiothérapie intra crânienne par recalage 3D multimodal, aide au diagnostic de maladies cardio-vasculaires par la superposition de données multimodales et détection du cancer de la vessie par mosaïquage d'images).
120

Study of Blast-induced Damage in Rock with Potential Application to Open Pit and Underground Mines

Trivino Parra, Leonardo Fabian 31 August 2012 (has links)
A method to estimate blast-induced damage in rock considering both stress waves and gas expansion phases is presented. The method was developed by assuming a strong correlation between blast-induced damage and stress wave amplitudes, and also by adapting a 2D numerical method to estimate damage in a 3D real case. The numerical method is used to determine stress wave damage and provides an indication of zones prone to suffer greater damage by gas expansion. The specific steps carried out in this study are: i) extensive blast monitoring in hard rock at surface and underground test sites; ii) analysis of seismic waveforms in terms of amplitude and frequency and their azimuthal distribution with respect to borehole axis, iii) measurement of blast-induced damage from single-hole blasts; iv) assessment and implementation of method to utilize 2D numerical model to predict blast damage in 3D situation; v) use of experimental and numerical results to estimate relative contribution of stress waves and gas penetration to damage, and vi) monitoring and modeling of full-scale production blasts to apply developed method to estimate blast-induced damage from stress waves. The main findings in this study are: i) both P and S-waves are generated and show comparable amplitudes by blasting in boreholes; ii) amplitude and frequency of seismic waves are strongly dependent on initiation mode and direction of propagation of explosive reaction in borehole; iii) in-situ measurements indicate strongly non-symmetrical damage dependent on confinement conditions and initiation mode, and existing rock structure, and iv) gas penetration seems to be mainly responsible for damage (significant damage extension 2-4 borehole diameters from stress waves; > 22 from gas expansion). The method has the potential for application in regular production blasts for control of over-breaks and dilution in operating mines. The main areas proposed for future work are: i) verification of seismic velocity changes in rock by blast-induced damage from controlled experiments; ii) incorporation of gas expansion phase into numerical models; iii) use of 3D numerical model and verification of crack distribution prediction; iv) further studies on strain rate dependency of material strength parameters, and v) accurate measurements of in-hole pressure function considering various confinement conditions.

Page generated in 0.0891 seconds