• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 22
  • 10
  • 8
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 147
  • 26
  • 23
  • 22
  • 19
  • 18
  • 15
  • 15
  • 14
  • 13
  • 12
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Data Bias in Rate Transient Analysis of Shale Gas Wells

Agnia, Ammar Khalifa Mohammed 2012 May 1900 (has links)
Superposition time functions offer one of the effective ways of handling variable-rate data. However, they can also be biased and misleading the engineer to the wrong diagnosis and eventually to the wrong analysis. Since the superposition time functions involve rate as essential constituent, the superposition time is affected greatly with rate issues. Production data of shale gas wells are usually subjected to operating issues that yield noise and outliers. Whenever the rate data is noisy or contains outliers, it will be hard to distinguish their effects from common regime if the superposition time functions are used as plotting time function on log-log plots. Such deceiving presence of these flow regimes will define erroneous well and reservoir parameters. Based on these results and with the upsurge of energy needs there might be some costly decisions will be taken such as refracting or re-stimulating the well especially in tight formations. In this work, a simple technique is presented in order to rapidly check whether there is data bias on the superposition-time specialized plots or not. The technique is based on evaluating the kernel of the superposition time function of each flow regime for the maximum production time. Whatever beyond the Kernel-Equivalent Maximum Production Time (KEMPT) it is considered as biased data. The hypothesis of this technique is that there is no way to see in the reservoir more than what has been seen. A workflow involving different diagnostic and filtering techniques has been proposed to verify proposed notion. Different synthetic and field examples were used in this study. Once the all problematic issues have been detected and filtered out, it was clear that whatever went beyond the KEMPT is a consequence of these issues. Thus, the proposed KEMPT technique can be relied on in order to detect and filter out the biased data points on superposition-time log-log plots. Both raw and filtered data were analyzed using type-curve matching of linear flow type-curves for calculating the original gas in-place (OGIP). It has been found that biased data yield noticeable reduced OGIP. Such reduction is attributed to the early fictitious onset of boundary dominated flow, where early false detection of the drainage boundaries defines less gas in-place occupied in these boundaries.
42

Prediction of long-term creep behavior of epoxy adhesives for structural applications

Feng, Chih-Wei 01 November 2005 (has links)
The mechanical property of polymeric materials changes over time, especially when they are subjected to long-term loading scenarios. To predict the time-dependent viscoelastic behaviors of epoxy-based adhesive materials, it is imperative that reliable accelerated tests be developed to determine their long-term performances under different exposed environments. A neat epoxy resin system and a commercial structural adhesive system for bonding aluminum substrates are investigated. A series of moisture diffusion tests have been performed for more than three months in order to understand the influence of the absorbed moisture on creep behavior. The material properties, such as elastic modulus and glass transition temperature, are also studied under different environmental conditions. The time-temperature superposition method produces a master curve allowing the long-term creep compliance to be estimated. The physics-based Coupling model is found to fit well the long-term creep master curve. The equivalence of the temperature and moisture effect on the creep compliance of the epoxy adhesives is also addressed. Finally, a methodology for predicting the long-term creep behavior of epoxy adhesives is proposed.
43

Estimation of translational motion by simplified planar compound-like eye schemes

Lin, Gwo-Long 14 December 2007 (has links)
This dissertation presents a technique for recovering translational motion parameters using two simplified planar compound-like eye schemes, namely a parallel trinocular system and a single-row Superposition-type Planar Compound-like Eye (SPCE). In the parallel trinocular scheme, a least squares estimation algorithm is developed for recovering the translational motion parameters. The proposed approach resolves the matrix singularity problem encountered when attempting to recover motion parameters using a conventional binocular scheme. To further reduce the computational complexity of the motion estimation process, a compact closed-form scheme is also proposed to estimate the translational motion parameters. The closed-form algorithm not only resolves the matrix singularity problem, but also avoids the requirement for matrix manipulation. As a result, it has a low computational complexity and is therefore an ideal solution for performing motion estimation in complex, real-world visual imaging applications following an initial image filtering process. The performance of the closed-form algorithm is evaluated by performing a series of numerical simulations in which translational displacements of various magnitudes in three-dimensional space are recovered in both noise-free and perturbed environments. In general, the results demonstrate that the translational motion parameters can be reconstructed with a high degree of accuracy provided that the motion in the depth direction is limited to small displacements only. Having developed a motion estimation scheme for a parallel trinocular system, additional charge coupled device (CCD) cameras are added in the horizontal direction to create a single-row SPCE. Translational motion models for the SPCE are then constructed by stacking the optical flow equations in the horizontal direction. The ego-translational parameters are then extracted using a simple least squares estimation algorithm. The simulation results reveal that the introduction of additional cameras to the machine vision system ensures an excellent motion estimation performance without the need for filters of any kind even when the viewing field is characterized by significant noise or the CCD deployment within the SPCE configuration has a non-uniform distribution. Overall, the parallel binocular scheme and single-row SPCE configuration presented in this dissertation demonstrate a high degree of robustness toward noise and enable the motion estimation process to be performed in a rapid and computationally efficient manner using a simple least squares approximation approach. Whilst science can not realistically hope to improve upon the visioning capabilities found in the insect world, the techniques presented in this dissertation nonetheless provide a sound foundation for the development of artificial planar-array compound-like eyes which mimic the mechanisms at work in biological compound eyes and attain an enhanced visioning performance as a result.
44

A Rheological Examination of Polymer Composites: Including Functionalized Carbon Nanotubes, Viable Polyurethane Alternates, and Contact Lens Hydrogels

Knudsen, Bernard 01 January 2013 (has links)
From medicine to aerospace, innovation in multiple fields will not occur without addressing current questions that still exist in polymer behavior and manipulation. This dissertation represents the research carried out over the course of three separate experiments using rheometry as the key technique to explore the behavior of polymer composites. In all three studies, polymer composites were investigated for changes to their known physical properties caused through the addition of a filler or functionalization. Chapter Two examines the possibility of enhancing poly(4-methyl-1-pentene) through the use of soluble carbon nanotubes. In this series of experiments, carbon nanotubes were covalently functionalized using reductive alkylation with a dodecyl group to render them easily soluble in the same organic solvents as low molecular weight poly(4-methyl-1-pentene). The polymer and the functionalized nanotubes were dissolved together in carbon tetrachloride then the solvent is removed leaving the functionalized nanotubes uniformly dispersed in the polymer matrix. The composites were then compression molded and the changes to the physical properties were explored. The functionalized nanotube filler generally acted to plasticize the samples producing transparent but colored polymers. The samples had a lower modulus and glass transition which was the opposite found by Clayton et al. using sonicated pristine carbon nanotubes. Polyurethanes have a growing significance in the biomedical field, and we explore the possibility fine tuning the properties of a polyurethane for such uses in Chapter Three. Here, self healing Polycarbonate polyurethanes (PCU) were synthesized with two different soft segments, Nippollan 964 and T-5652, and characterized with dielectric analysis (DEA), differential scanning calorimetry (DSC) and rheometry. The extra methyl group acted to produce a crystalline-like ordered hard segment that caused the 964 PCU to become Arrhenius in the glass transition region where the 5652 PCU had followed WLF behavior. Results showed the pendent methyl group acted to impart a crystalline-like character to the 964 PCU making it a candidate for applications that would be suited to a stiffer polymer. In Chapter Four we explore the possibility of increasing the wearability and comfort of contact lenses through increased hydration. The hydrogels 2-hydroxyethylmethacrylate (HEMA) and glycidyl methacrylate (GMA) solutions were created in three concentrations; neat, 50/50 and 60/40. Into these samples [Cu2({μ2-CO2}R)4(axial)2] (Cu(II) 4-hydroxybenzoic acid (MHBC) were dissolved 0.05% by weight. The samples were then polymerized via UV polymerization and compression molded. The experiments performed included penetration resistance , water absorption, micro hardness and glass transition. Addition of the MHBC acted to increase the water uptake of the samples but also reduced their ability to withstand mechanical penetration. With further study into crosslinking of the polymers, the MHBC could show promise in increasing hydration for commercial use.
45

Superposition in the leading edge region of a film cooled gas turbine vane

Anderson, Joshua Brian 04 April 2014 (has links)
The leading edge of a turbine vane is subject to some of the highest temperature loading within an engine, and an accurate understanding of leading edge film coolant behavior is essential to efficient engine design. Although there have been many investigations of the adiabatic effectiveness for showerhead film cooling within the leading edge region, there have been no previous studies in which individual rows of the showerhead were tested with the explicit intent of validating superposition models. For the current investigation, a series of adiabatic effectiveness experiments were performed with a five-row showerhead, wherein each row of holes was operated in isolation. This allowed evaluation of superposition on both the suction side of the vane, which was moderately convex, and the pressure side of the vane, which was mildly concave. Superposition was found to accurately predict performance on the suction side of the vane at lower momentum flux ratios, but not for higher momentum flux ratios. On the pressure side of the vane, the superposition predictions were consistently lower than measured values, with significant under-prediction of adiabatic effectiveness occurring at the higher mass flow rates. Possible reasons for the under-prediction of effectiveness by the superposition model are presented. / text
46

Laser generated thermoelastic waves in finite and infinite transversely isotropic cylinders

Chitikireddy, Ravi January 2011 (has links)
This thesis presents a theoretical study of thermoelastic guided waves in cylinders in the context of Lord-Shulman generalized theory of thermoelasticity. Two different methods were formulated to study dispersion relations in infinite cylinders. One of them is a Semi Analytical Finite Element (SAFE) method and the other is an analytical method. In the SAFE method, the dispersion equation has been formulated as a generalized eigenvalue problem by treating radial displacement and temperature with a one dimensional finite element model through the thickness of the cylinder. In the analytical method, displacement potentials are introduced to obtain the dispersion relations of guided wave modes. This method is applicable to isotropic cylinders and has been developed primarily to cross check the SAFE formulation. Frequency spectra obtained by both methods for an isotropic cylinder have shown excellent agreement with each other. Since the SAFE method can be used for an anisotropic composite cylinder, guided wave modes for anisotropic and composite cylinders are presented. Transient analysis of ultrasonic guided waves generated by concentrated heating of the outer surface of an infinite anisotropic cylinder has also been studied. The SAFE method is employed to model the response of a cylinder due to a pulsed laser focused on its surface. Green’s functions were constructed numerically by superposition of guided wave modes in frequency and wave number domains. Time histories of the propagating modes are then calculated by applying an inverse Fourier transformation in the time domain. Transient radial displacements of longitudinal and flexural modes of a silicon nitride cylinder are presented. Propagation of thermoelastic waves in finite length circular cylinders have also been investigated. The SAFE method is used to simulate the guided wave modes in the cylinder. Frequency spectra obtained by the SAFE formulation, for a finite length transversely isotropic cylinder, are validated by comparing the numerical results with relevant publications. Frequency spectra for axisymmetric and asymmetric modes in a silicon nitride finite cylinder with both ends insulated and restrained by frictionless rigid walls are presented. The plain strain problem of circumferential guided waves is also studied and the results are validated for an isothermal case.
47

Optimisation du séquencement de tâches avec lissage du mouvement dans la réalisation de missions autonomes ou collaboratives d'un humanoïde virtuel ou robotique

Keith, François 10 December 2010 (has links) (PDF)
La réalisation d'une mission robotique se décompose usuellement en trois étapes: la planification, i.e. le choix des taches à réaliser, le séquencement, i.e. la détermination du timing et de l'ordre de réalisation des tâches, et finalement l'exécution du plan de tâches. Pour les systèmes redondants tels que les robots humanoïdes, la tâche (dans le sens de fonction de tâche) détermine une commande sur une partie du robot, permettant ainsi la réalisation simultanée de plusieurs tâches à l'aide d'un formalisme de pile de tâches. Cependant, les mécanismes d'ordonnancement classiques ne gèrent pas les cas où le mouvement est déterminé par un ensemble de tâches hiérarchisé: pour ces robots, la phase d'ordonnancement est éludée et l'exécution se base directement sur la plan de tâches donné par le planificateur. Le but de cette thèse est de réintroduire cette phase d'ordonnancement, tout en maintenant le rôle central de la tâche. Dans un premier temps, la continuité de la commande fournie par la pile de tâches est étudiée. En particulier, nous mettons en évidence les discontinuités accompagnant la réalisation d'événements discrets (à savoir l'insertion, le retrait et l'échange de priorité de tâches), puis proposons et comparons plusieurs méthodes de lissage. Ensuite, nous présentons une méthode permettant d'optimiser une séquence de tâches donnée en modifiant le timing et la paramétrisation des tâches, tout en respectant les contraintes liées à l'environnement. Enfin, une nouvelle utilisation de la flexibilité de la fonction de tâche consistant à adapter une séquence de tâches aux préférences d'un utilisateur humain est illustrée. Ces résultats sont illustrés sur un robot humanoïde.
48

Laser generated thermoelastic waves in finite and infinite transversely isotropic cylinders

Chitikireddy, Ravi January 2011 (has links)
This thesis presents a theoretical study of thermoelastic guided waves in cylinders in the context of Lord-Shulman generalized theory of thermoelasticity. Two different methods were formulated to study dispersion relations in infinite cylinders. One of them is a Semi Analytical Finite Element (SAFE) method and the other is an analytical method. In the SAFE method, the dispersion equation has been formulated as a generalized eigenvalue problem by treating radial displacement and temperature with a one dimensional finite element model through the thickness of the cylinder. In the analytical method, displacement potentials are introduced to obtain the dispersion relations of guided wave modes. This method is applicable to isotropic cylinders and has been developed primarily to cross check the SAFE formulation. Frequency spectra obtained by both methods for an isotropic cylinder have shown excellent agreement with each other. Since the SAFE method can be used for an anisotropic composite cylinder, guided wave modes for anisotropic and composite cylinders are presented. Transient analysis of ultrasonic guided waves generated by concentrated heating of the outer surface of an infinite anisotropic cylinder has also been studied. The SAFE method is employed to model the response of a cylinder due to a pulsed laser focused on its surface. Green’s functions were constructed numerically by superposition of guided wave modes in frequency and wave number domains. Time histories of the propagating modes are then calculated by applying an inverse Fourier transformation in the time domain. Transient radial displacements of longitudinal and flexural modes of a silicon nitride cylinder are presented. Propagation of thermoelastic waves in finite length circular cylinders have also been investigated. The SAFE method is used to simulate the guided wave modes in the cylinder. Frequency spectra obtained by the SAFE formulation, for a finite length transversely isotropic cylinder, are validated by comparing the numerical results with relevant publications. Frequency spectra for axisymmetric and asymmetric modes in a silicon nitride finite cylinder with both ends insulated and restrained by frictionless rigid walls are presented. The plain strain problem of circumferential guided waves is also studied and the results are validated for an isothermal case.
49

Layered Adaptive Modulation and Coding For 4G Wireless Networks

Wei, Zhenhuan 18 January 2011 (has links)
Emerging 4G standards, such as WiMAX and LTE have adopted the proven technique of Adaptive Modulation and Coding (AMC) to dynamically react to channel fluctuations while maintaining bit-error rate targets of the transmission. This scheme makes use of the estimated channel state indication (CSI) to efficiently utilize channel capacity for next transmission, but it brings with it the stale CSI problem due to the frequently channel fluctuations. As its objective, this thesis focuses on mitigating the vicious effect of stale CSI by proposing a novel framework that incorporate AMC with layered transmission through Superposition Coding (SPC) is introduced. A layered multi-step finite-state Markov chain model (FSMC) is developed under this framework, to effectively assist the system in selecting the optimal modulation and coding scheme as well as the power allocated for each layer in every multi-resolution unicast transmission. Extensive simulations are conducted to verify the proposed framework and compare its performance with other counterparts. The effects of changing key parameters, such as the complexity factor and step size, are also investigated to get close to real world performance. Results demonstrate that the proposed framework can achieve better spectrum efficiency than similar counterparts, due to its improved robustness to the stale CSI problem for each multi-resolution modulated transmission, also these show that the performance of two-layer scheme is good enough for layer allocation, without need of more layers.
50

Analysis and management of temperature fields in F1 cars

Lim, Christopher Say Liang January 2017 (has links)
This thesis investigates the broad subject of thermal management problems currently encountered in Formula One race car design. A computationally economical tool, based on linear superposition, for predicting the temperature field arising from a set of thermal and inlet velocity boundary conditions was developed. Using a set of base analyses, the research showed that it is possible to superpose and scale these results in order to predict the temperature field for differing sets of boundary conditions. This method was shown to have a significant speed advantage over typical computational simulations. An experimental facility was designed and built to provide validation for aspects of the linear superposition approach. A method of measuring the cylinder wall heat flux has been developed using thin film gauge technology. The resulting sensor was designed to fit the mounting of existing instrumentation in order to avoid requiring large scale modifications to existing test facilities. The design makes use of modern rapid prototyping techniques in order to meet this mounting requirement and to provide a novel solution to routing the signal from the thin film gauge. In addition, the research investigated a method for predicting the cylinder wall temperature in real-time. The cylinder wall is subject to heat fluxes from in-cylinder gases during the engine cycle on the inner face and the effect of the coolant jacket on the outer face. Two separate methods were used to process these thermal boundary conditions respectively, before being superposed in order to form the whole solution. The computation time of the method is characterised in order to demonstrate its feasibility for real-time operation.

Page generated in 0.1148 seconds