1 |
Designing supramolecular liquid-crystalline hybrids from pyrenyl-containing dendrimers and arene ruthenium metallacyclesPitto-Barry, Anaïs, Barry, Nicolas P.E., Russo, V., Heinrich, B., Donnio, B., Therrien, B., Deschenaux, R. 24 November 2014 (has links)
Yes / The association of the arene ruthenium metallacycle [Ru4(p-cymene)4(bpe)2(donq)2][DOS]4 (bpe = 1,2-bis(4-pyridyl)ethylene, donq = 5,8-dioxydo-1,4-naphtoquinonato, DOS = dodecyl sulfate) with pyrenyl-functionalized poly(arylester) dendrimers bearing cyanobiphenyl end-groups is reported. The supramolecular dendritic systems display mesomorphic properties as revealed by polarized optical microscopy, differential scanning calorimetry and small-angle X-ray scattering measurements. The multicomponent nature of the dendrimers and of the corresponding host–guest supramolecules (i.e., end-group mesogens, dendritic core, pyrene unit, aliphatic spacers, and metallacycle) leads to the formation of highly segregated mesophases with a complex multilayered structure due to the tendency of the various constitutive building-blocks to separate in different organized zones. The pyrenyl dendrimers exhibit a multilayered smectic A-like phase, thereafter referred to as LamSmA phase to emphasize this unaccustomed morphology. As for the corresponding Ru4–metallacycle adducts, they self-organize into a multicontinuous thermotropic cubic phase with the Im3̅m space group symmetry. This represents a unique example of liquid-crystalline behavior observed for such large and complex supramolecular host–guest assemblies. Models of their supramolecular organizations within both mesophases are proposed. / R.D. thanks the Swiss National Science Foundation (Grant No 200020-140298) for financial support.
|
Page generated in 0.1068 seconds