• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling Stream-Aquifer Interactions During Floods and Baseflow: Upper San Pedro River, Southeastern Arizona

Simpson, Scott January 2007 (has links)
Streams and groundwaters interact in distinctly different ways during flood versus base flow periods. Recent research in the Upper San Pedro River using isotopic and chemical data shows that (1) near-stream, or 'riparian,' groundwater recharged during high streamflow periods is a major contributor to streamflow for the rest of the year, and (2) the amount of riparian groundwater derived from this flood recharge can vary widely (10-90%) along the river. Riparian groundwater in gaining reaches is almost entirely basin groundwater, whereas losing reaches are dominated by prior streamflow.This description of streamflow gives rise to the questions of (1) how much flood recharge occurs at the river-scale, and (2) subsequently, what is the relative importance of flood recharge and basin groundwater in maintaining the hydrologic state of the riparian system. To address these questions, a coupled hydrologic-solute model was constructed for 45 km of the Upper San Pedro riparian system.
2

Multiple hydrological steady states and resilience

Peterson, Tim J. January 2009 (has links)
Many physically-based models of surface and groundwater hydrology are constructed without the possibility of multiple stable states. For such a conceptualisation, at the cessation of a transient hydrological disturbance of any magnitude, the model will return to the original stable state and therefore will have an infinite resilience. Ecosystem resilience science propose a very different dynamic where, if the system has a positive feedback, disturbances may shift the system over a threshold where, upon cessation of the disturbance, the system will move to a different steady state. This dissertation brings together concepts from hydrology and ecosystem resilience science to highlight this often implicit assumption within hydrology. It tests the assumption that dry land water-limited catchments always have only one steady state (henceforth referred to as 'attractor'). Following a discussion of this implicit assumption within hydrology, approaches for rigorous testing that could result in its falsification are considered and that of numerical modelling is adopted. The aims of the research were to test this assumption by proposing a biophysically plausible hydrological model; utilise it to investigate the catchment attributes likely to result in multiple attractors; and to assess the model's validity by way of implementation and calibration. (For complete abstract open document.)

Page generated in 0.1521 seconds