1 |
Ion Beam Synthesis of Ge NanowiresMüller, Torsten 31 March 2010 (has links) (PDF)
The formation of Ge nanowires in V-grooves has been studied experimentally as well as theoretically. As substrate oxide covered Si V-grooves were used formed by anisotropic etching of (001)Si wafers and subsequent oxidation of their surface. Implantation of 1E17 Ge+ cm^-2 at 70 keV was carried out into the oxide layer covering the V-grooves. Ion irradiation induces shape changes of the V-grooves, which are captured in a novel continuum model of surface evolution. It describes theoretically the effects of sputtering, redeposition of sputtered atoms, and swelling. Thereby, the time evolution of the target surface is determined by a nonlinear integro-differential equation, which was solved numerically for the V-groove geometry. A very good agreement is achieved for the predicted surface shape and the shape observed in XTEM images. Surprisingly, the model predicts material (Si, O, Ge) transport into the V-groove bottom which also suggests an Ge accumulation there proven by STEM-EDX investigations. In this Ge rich bottom region, subsequent annealing in N2 atmosphere results in the formation of a nanowire by coalescence of Ge precipitates shown by XTEM images. The process of phase separation during the nanowire growth was studied by means of kinetic 3D lattice Monte-Carlo simulations. These simulations also indicate the disintegration of continuous wires into droplets mediated by thermal fluctuations. Energy considerations have identified a fragmentation threshold and a lower boundary for the droplet radii which were confirmed by the Monte Carlo simulation. The here given results indicate the possibility of achieving nanowires being several nanometers wide by further growth optimizations as well as chains of equally spaced clusters with nearly uniform diameter.
|
2 |
Ion Beam Synthesis of Ge NanowiresMüller, Torsten January 2001 (has links)
The formation of Ge nanowires in V-grooves has been studied experimentally as well as theoretically. As substrate oxide covered Si V-grooves were used formed by anisotropic etching of (001)Si wafers and subsequent oxidation of their surface. Implantation of 1E17 Ge+ cm^-2 at 70 keV was carried out into the oxide layer covering the V-grooves. Ion irradiation induces shape changes of the V-grooves, which are captured in a novel continuum model of surface evolution. It describes theoretically the effects of sputtering, redeposition of sputtered atoms, and swelling. Thereby, the time evolution of the target surface is determined by a nonlinear integro-differential equation, which was solved numerically for the V-groove geometry. A very good agreement is achieved for the predicted surface shape and the shape observed in XTEM images. Surprisingly, the model predicts material (Si, O, Ge) transport into the V-groove bottom which also suggests an Ge accumulation there proven by STEM-EDX investigations. In this Ge rich bottom region, subsequent annealing in N2 atmosphere results in the formation of a nanowire by coalescence of Ge precipitates shown by XTEM images. The process of phase separation during the nanowire growth was studied by means of kinetic 3D lattice Monte-Carlo simulations. These simulations also indicate the disintegration of continuous wires into droplets mediated by thermal fluctuations. Energy considerations have identified a fragmentation threshold and a lower boundary for the droplet radii which were confirmed by the Monte Carlo simulation. The here given results indicate the possibility of achieving nanowires being several nanometers wide by further growth optimizations as well as chains of equally spaced clusters with nearly uniform diameter.
|
Page generated in 0.0928 seconds