• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5862
  • 1830
  • 1661
  • 672
  • 549
  • 176
  • 175
  • 137
  • 127
  • 101
  • 91
  • 51
  • 51
  • 51
  • 51
  • Tagged with
  • 13963
  • 1649
  • 1403
  • 973
  • 864
  • 779
  • 779
  • 749
  • 725
  • 689
  • 661
  • 628
  • 623
  • 564
  • 539
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
511

Planning for Curved-Surface Milling and Surface Profile Measurement by Taguchi Method

Wang, Hsueh-o 30 June 2006 (has links)
ABSTRACT This research uses Taguchi Method, combined with Computer Aided Design and Manufacturing, processing the work piece into the saddle type. Next, diverse sampling methods are applied to measure the profile of surface with Coordinate Measuring Machine, with an aim to analyzing the main factors that influence cutting and seeking the last conditions for cutting out the curved surface; in addition, I will probe into the contribution rate of each factor which influences the precision during the process of measurement. The following results of this research are expected to be offered to the circles of vocational education as a basis of processing and measuring instruction. In this way, it will not take too much time to try and error and therefore, the practice course can be more efficient. 1. With reference to the documents that are focused on the factors affecting the cutting, this thesis, by means of Taguchi Method, shows that during the process of cutting saddle-type curved surface, the rotating speed of the axle is the most influential, whose contribution rate is 59.38%. 2. Since most documents are on circles, balls or cone objects, this thesis will aim at the measurement of saddle-type curved surface, with an intention to further the measuring technique. 3. It is found that as to the saddle-type curved surface, random sampling can get the profile of surface with minimal errors, and has no such trouble as using HSS or LHS, which can reduce time and cost. 4. In the experiment of Taguchi Method, according to analysis of variance, the influence of the sampling area is the greatest while the choice of sampling method only contributes to 3.46%.
512

A Preliminary Study on Ultimate Surface Roughness of Hydrodynamic Polishing Process

Chen, Yung-Wei 03 July 2001 (has links)
The ultimate value of surface roughness and its characteristic for the polishing process was investigated in this thesis. To find out the nature of ultimate surface roughness by means of the hydrodynamic polishing process and can be used for all polishing method. A preliminary mathematical model that was proposed to explain the ultimate surface roughness proceedings and a series of experiments was planed to verify suitable of this model. Starting with the rule for ultimate surface roughness happened. The assumption that abrasive particle at roughness peak and valley machining capability differ less than one atom, the ultimate surface roughness be attained. We can propose the mathematical model of ultimate surface roughness based on this rule and the previous study of hydrodynamic polishing process. Following by useing the computer simulation to help us exploring ultimate surface roughness characteristic and testing experiments fit for the forecasting. Finally, we explain reasons that cause the experiment results not agree with the model anticipation and propose better lubrication condition to polish the optimum surface.
513

Polymer Adsorption on the Air/Solution Interface Probed by Dynamic Surface Light Scattering

Chang, Ai-Li 19 June 2002 (has links)
Surface Laser Light Scattering (SLLS) is a heterodyne detection technique used to probe the surface properties of fluid interfaces. These interfaces are either liquid/liquid or vapor/liquid, and they may include insoluble monolayers or polymer films deposited on liquid surfaces as well as microemulsions in solution at low concentration. This technique provides one with a nonperturbative way to obtain surface tension and viscosity. A diffraction grating is employed to provide a stable local oscillatior, hence selecting an accurate ripplon wave vector . This thesis deals with the investigation of the interface between air and solution consisting of the methanol and water mixture and poly(N-isopropylacrylamide) or PNIPAM which is one of the fascinating polymeric materials. The polymer PNIPAM shows distinct responses to variations in the surrounding environment (such as thermal gradient, change in pH, etc.). The surface tension extracted from the SLLS data using the Kelvin equation is found to agree well with that obtained by using the Wilhelmy plate method. For the range of wave vectors cm-1, the power spectrum detected in frequency domain can be fit to a Lorentzian profile. Our experiments show that when the volume percentage of methanol increases, the interfacial property becomes insensitive to the presence of PNIPAM.
514

Effect of Active Elements on Surface Ripple during Electron-Beam Weld

Chen, Yu-Hung 03 July 2002 (has links)
Abstract The occurrence of ripples on the workpiece surface after solidification in electron-beam weld or melting is experimentally and analytically investigated. The maximum accelerating voltage and welding current of electron-beam welder are 60kV and 50mA, respectively, while the workpieces are four different materials containing different quantities of sulfur. Using a scale analysis to account for heat transfer and fluid flow induced by different quantities of surface active element in the molten pool. The result predicted results show good agreement with experimental data.
515

RECONSTRUCTION OF HIGH ARCTIC WINTER SURFACE ENERGY FLUXES

Pike-Thackray, Colin 05 August 2011 (has links)
Throughout the late 20th and early 21st century, the global temperature has been on the rise, a process that has been accelerated in the Arctic. The Arctic surface temperatures have risen at a factor of 3 greater rate than the global average, leading to the term Arctic Amplification of climate change. In this study, the enhanced warming of the Arctic, and the enhancement at the Arctic surface in comparison to the warming of the atmosphere aloft, is investigated through a reconstruction of the past surface energy balance by a model driven by downwelling irradiance reconstructed using radiosonde profiles and the radiative transfer code SBDART. The downwelling irradiance is shown to be increasing over the time-period of 1994-2009, and the sources of this increase are diagnosed. The time-evolution of the surface flux terms are discussed, and the sensitivity of the surface temperature to changes in atmospheric temperature is investigated.
516

Studies of Adsorption of Organic Macromolecules on Oxide and Perfluorinated Surfaces

Sun, Peiling 15 October 2011 (has links)
Humic-based organic compounds containing phenol or benzoic acid groups strongly compete with phosphates for specific binding sites on the surface of these colloidal particles. To study the interactions between phenol groups and the surface binding sites of unmodified or modified colloidal particles, chemical force spectrometry (CFS) was used as a tool to measure the adhesion force between an atomic force microscopy (AFM) tip terminated with a phenol self-assembled monolayer and colloidal particles under varying pH conditions. Two modification methods, co-precipitation and post-precipitation, were used to simulate the naturally-occurring phosphate and humic-acid adsorption process. The pH dependence of adhesion forces between phenol-terminated tip and colloidal particles could be explained by an interplay of electrostatic forces, the surface loading of the modifying phosphate or humic acid species and ionic hydrogen bonding. Polydimethylsiloxane (PDMS) is a widely-used polymer in microfluidic devices. PDMS surfaces are commonly modified to make it suitable for specific microfluidic devices. We studied the surface modification of PDMS using four perfluoroalkyl-triethoxysilane molecules of differing length of perfluorinated alkyl chain. The results show that the length of fluorinated alkyl chain has important effects on the density of surface modifying molecules, surface topography and surface zeta potential. The perfluorinated overlayer makes PDMS more efficient at supporting electroosmotic flow, which has potential applications in microfluidic devices. The kinetic study of RNase A, lysozyme C, α-lactalbumin and myoglobin at different concentrations adsorbed on the self-assembled monolayers of 1-octanethiol (OT-Au) and 1H, 1H, 2H, 2H-perfluorooctyl-1-thiol (FOT-Au) has been carried out. The results show a positive relationship between the lower protein concentration and the increased adsorption rate constant (ka) on both surfaces. At low concentrations, the protein adsorption on an OT-Au surface has greater ka than it on a FOT-Au surface. Comparing ka values for four proteins on OT-Au and FOT-Au surface demonstrates that hard proteins (lysozyme and RNase A) have larger ka than soft proteins (α-lactalbumin and myoglobin) on both surfaces. The discussion is based on the hydrophobicity of OT-Au and FOT-Au surfaces, as well as average superficial hydrophobicity, flexibility, size, stability, and surface induced conformation change of proteins. / Thesis (Ph.D, Chemistry) -- Queen's University, 2011-10-14 21:08:31.617
517

Evaluation of surfactants for the enhancement of PCB degradation

Howell, Desiree Pearl 05 1900 (has links)
No description available.
518

Modification of surfaces with thin organic films by reaction with aryldiazonium salts

Lehr, Josua January 2010 (has links)
In this work, the modification of conducting substrates with thin (nanometer thick) aryl films via reaction with aryldiazonium salts was investigated. Two methods were used: modification by electro-reduction of the aryldiazonium salts and modification by spontaneous reaction of aryldiazonium the salts with the surface at open circuit potential. The majority of the studies were undertaken using p-nitrobenenze diazonium salt, which gives electro-active nitrophenyl (NP) films at the surface that can be detected and characterized by cyclic voltammetry. Films prepared spontaneously on carbon and gold electrodes at open circuit potential were characterized by electrochemistry, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements. At both carbon and gold, spontaneous modification proceeds via electron transfer from the surface to the diazonium salt.Furthermore, on both types of surface, spontaneously prepared NP films were found to be loosely packed multilayers of less than 5 nm in thickness. The spontaneous reaction was utilized for the patterning of carbon, gold, silicon and copper surfaces by microcontact printing (μCP) with diazonium salts. The presence of spontaneously formed films upon printing was confirmed by cyclic voltammetry and AFM. The films were demonstrated to be useful for the tethering of further molecules to the surface. Patterns prepared by μCP were imaged using scanning electron microscopy (SEM) and condensation figures. The preparation of two-component systems, with different chemical functionalities attached to different, well-defined, regions of the surface, was demonstrated. The optimization of the long term activity of glucose oxidase hydrogels by covalent attachment of the hydrogels to modified carbon electrodes was investigated. Covalent attachment was demonstrated, but the resulting electrode-hydrogel surfaces did not show long-term activities superior to those for physisorbed hydrogels. It is suggested that the limiting factor for long-term hydrogel activity is not adhesion of the hydrogel to the surface, but degradation of enzymatic activity by H2O2.
519

Modification of Glassy Carbon Electrodes with Diazonium Cation Terminated Films: "Sticky Surfaces"

Lee, Lita January 2011 (has links)
This thesis described the modification of glassy carbon (GC) electrodes with aminophenyl (AP) films via in situ reduction of aminobenzene diazonium ions. The characterisation of the AP modified GC was conducted electrochemically by oxidation of the AP functionalities in acidic aqueous conditions. Ferricyanide and ruthenium hexamine redox probes were also used to investigate the blocking properties of the AP films. Before electrochemical oxidation of the AP functionalities, AP films were shown to have a nett positive charge at pH 7. After electrochemical oxidation in protic conditions, the film was either neutral or negatively charged. The preparation of diazonium cation terminated surface, which is termed 'sticky surface', by reaction of the AP modified electrodes with NaNO₂ in acidic condition, was investigated and the sticky surface was electrochemically characterised. More than one species was formed in the reaction of the AP film with NaNO₂. The reactions of sticky surface with aniline, citrate- and thiol-capped gold nanoparticles (Au-nps) were also studied. Spontaneous reaction of sticky surface with thiol-capped Au-nps had been achieved, and suggested that the reaction leads to the formation of Au–C bonds, via the loss of nitrogen. However, for the reaction of the sticky surface with citrate-capped Au-nps, it was unclear whether covalent bonding had been achieved. The reason for this was due to the possibility of an electrostatic interaction between the negatively charged citrate-capped Au-nps and the positively charged sticky surface. The stability of the sticky surface in acidic aqueous conditions was studied electrochemically and by reaction with thiol-capped Au-nps. It was found that the diazonium cations on the sticky surface are not stable over one hour in aqueous acidic conditions, or even in low temperature. The electro-catalytic activity of the thiol-capped Au-nps attached to the GC electrode via sticky surface towards the oxidation of ascorbic acid was briefly examined, and the surface was found to catalyse the oxidation reaction.
520

SURFACE TEXTURES FOR ENHANCED LUBRICATION: FABRICATION AND CHARACTERIZATION TECHNIQUES

Venkatesan, Sriram 01 January 2005 (has links)
Theoretical and experimental results show that the performance of a load-bearing surface in hydrodynamic lubrication may be enhanced by engineering a definable surface texture onto the surface. These surface textures are in the form of protrusions (positive asperities) or cavities (negative asperities) of known size and geometry. The benefits of such surface textures include lower friction torque, higher load capacity and lower operating temperatures. This Thesis details a fabrication process to manufacture such surface textures/asperities on flat surfaces. The asperities are fabricated using a UV photolithography process followed by electroplating. A complete surface characterization is done to evaluate the effectiveness of the manufacturing process. From the characterization results, some errors in asperity geometry are identified and statistically quantified. These errors are found to be normally distributed and the random surface roughness is 1 to 3 orders of magnitude less than the deterministic feature size. The accuracy of the manufacturing process for fabricating the asperities was found to lie within 6.5 % of the desired value over all the errors studied. Finally, a sensitivity analysis is done to theoretically evaluate the effect of some of these errors in the hydrodynamic lubrication regime.

Page generated in 0.0637 seconds