21 |
Compensation techniques for cascaded delta-sigma A/D converters and high-performance switched-capacitor circuitsSun, Tao 21 September 1998 (has links)
This thesis describes compensation techniques for cascaded delta-sigma A/D
converters (ADCs) and high-performance switched-capacitor (SC) circuits. Various
correlated-double-sampling (CDS) techniques are presented to reduce the effects of the
nonidealities, such as clock feedthrough, charge injection, opamp input-referred noise and
offset, and finite opamp gain, in SC circuits. A CDS technique for the compensation of
opamp input-referred offset and clock-feedthrough effect is examined and improved to
achieve continuous operation. Experimental results show that after the compensation, the
SC integrator's output signal swing is greatly increased.
The effects of the analog circuitry nonidealities in delta-sigma ADCs are also analyzed.
The analysis shows that the nonidealities in cascaded delta-sigma ADCs cause
noise leakage, which limits the overall performance of the cascaded modulators. In order
to reduce the noise leakage, a novel adaptive compensation technique is proposed. To
verify the effectiveness of the proposed compensation techniques, a prototype 2-0 cascaded
modulator was designed. Its first stage, a second-order delta-sigma modulator with
test signal input circuit, was designed and fabricated in 1.2 ��m CMOS technology. The
measurement results show that the noise leakage is reduced effectively by the compensation,
and the performance of the cascaded delta-sigma modulator is greatly improved. / Graduation date: 1999
|
22 |
Low voltage techniques for pipelined analog-to-digital converters /Carnes, Joshua Kenneth. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2007. / Printout. Includes bibliographical references (leaves 82-86). Also available on the World Wide Web.
|
23 |
Design of large time constant switched-capacitor filters for biomedical applicationsTumati, Sanjay 17 February 2005 (has links)
This thesis investigates the various techniques to achieve large time constants and the ultimate limitations therein. A novel circuit technique for the realization of large time constants for high pass corners in switched-capacitor filters is also proposed and compared with existing techniques. The switched-capacitor technique is insensitive to parasitic capacitances and is area efficient and it requires only two clock phases. The circuit is used to build a typical switched-capacitor front end with a gain of 10. The low pass corner is fixed at 200 Hz. The high pass corner is varied from 0.159Hz to 4 Hz and various performance parameters, such as power consumption, silicon area etc., are compared with conventional techniques and the advantages and disadvantages of each technique are demonstrated. The front-ends are fully differential and are chopper stabilized to protect against DC offsets and 1/f noise. The front-end is implemented in AMI0.6um technology with a supply voltage of 1.6V and all transistors operate in weak inversion with currents in the range of tens of nano-amperes.
|
24 |
Multipath Miller Compensation for Switched-Capacitor SystemsLi, Zhao 10 August 2011 (has links)
A hybrid operational amplifier compensation technique using Miller and multipath compensation is presented for multi-stage amplifier designs. Unconditional stability is achieved by the means of pole-zero cancellation where left-half zeros cancel out the non-dominant poles of the operational amplifier. The compensation technique is stable over process, temperature, and voltage variations.
Compared to conventional Miller-compensation, the proposed compensation technique exhibits improved settling response for operational amplifiers with the same gain, bandwidth, power, and area. For the same settling time, the proposed compensation technique will require less area and consume less power than conventional Miller-compensation. Furthermore, the proposed technique exhibits improved output slew rate and lower noise over the conventional Miller-compensation technique.
Two-stage operational amplifiers were designed in a 0.18µm CMOS process using the proposed technique and conventional Miller-compensated technique. The design procedure for the two-stage amplifier is applicable for higher-order amplifier designs. The amplifiers were incorporated into a switched-capacitor oscillator where the oscillation harmonics are dependent on the settling behaviour of the op amps. The superior settling response of the proposed compensation technique results in a improved output waveform from the oscillator.
|
25 |
Design and evaluation of an integrated variable gain, low noise amplifier for medical applicationLi, Chun-Yi 22 August 2011 (has links)
Acquisition of bio-signals is an important feature in advanced medical applications. In order to record bio-signals such as electrocardiogram (ECG) or electromyogram (EMG), a switched-capacitor amplifier with variable linear gain and low noise front-end is discussed in this thesis. The circuit is designed and implemented as an Application-Specific Integrated Circuit (ASIC). This ASIC consists of transconductance stage with custom-designed lateral bipolar transistors in the input stage, switched-capacitor integrating stage, sample-and-hold circuit and buffer output stage. Lateral bipolar transistors were chosen with the intention of reducing flicker noise compared to using MOS input devices. Using a switched-capacitor (SC) stage the gain is adjustable to accommodate input signals of different amplitude making it useful for the recording of different biomedical signals. Adjustable gain is achieved by varying the clock phase delay between two digital control signals which were generated by a microcontroller. Also, small size and low supply voltage operation (¡Ó0.9 V) are achieved. Therefore, this ASIC may be used in wearable or even with implantable medical applications. Measured results for test chips realized in TSMC 0.35 £gm CMOS technology are reported confirming the correct operation of the circuit.
|
26 |
Design Techniques for High Speed Low Voltage and Low Power Non-Calibrated Pipeline Analog to Digital ConvertersAssaad, Rida Shawky 2009 December 1900 (has links)
The profound digitization of modern microelectronic modules made Analog-to-
Digital converters (ADC) key components in many systems. With resolutions up to
14bits and sampling rates in the 100s of MHz, the pipeline ADC is a prime candidate for
a wide range of applications such as instrumentation, communications and consumer
electronics. However, while past work focused on enhancing the performance of the
pipeline ADC from an architectural standpoint, little has been done to individually
address its fundamental building blocks. This work aims to achieve the latter by
proposing design techniques to improve the performance of these blocks with minimal
power consumption in low voltage environments, such that collectively high
performance is achieved in the pipeline ADC.
Towards this goal, a Recycling Folded Cascode (RFC) amplifier is proposed as
an enhancement to the general performance of the conventional folded cascode. Tested
in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18?m Complementary
Metal Oxide Semiconductor (CMOS) technology, the RFC provides twice the
bandwidth, 8-10dB additional gain, more than twice the slew rate and improved noise performance over the conventional folded cascode-all at no additional power or silicon
area. The direct auto-zeroing offset cancellation scheme is optimized for low voltage
environments using a dual level common mode feedback (CMFB) circuit, and amplifier
differential offsets up to 50mV are effectively cancelled. Together with the RFC, the
dual level CMFB was used to implement a sample and hold amplifier driving a singleended
load of 1.4pF and using only 2.6mA; at 200MS/s better than 9bit linearity is
achieved. Finally a power conscious technique is proposed to reduce the kickback noise
of dynamic comparators without resorting to the use of pre-amplifiers. When all
techniques are collectively used to implement a 1Vpp 10bit 160MS/s pipeline ADC in
Semiconductor Manufacturing International Corporation (SMIC) 0.18[mu]m CMOS, 9.2
effective number of bits (ENOB) is achieved with a near Nyquist-rate full scale signal.
The ADC uses an area of 1.1mm2 and consumes 42mW in its analog core. Compared to
recent state-of-the-art implementations in the 100-200MS/s range, the presented pipeline
ADC uses the least power per conversion rated at 0.45pJ/conversion-step.
|
27 |
A High Efficiency Switched-Capacitor DC-DC up ConverterYang, Shun-Pin 25 July 2003 (has links)
A new DC-DC up converter with high efficiency and low output ripple is proposed. We replace previous charge pump converters by switched-capacitor converters to improve the power efficiency and add a voltage regulator at the output to reduce the ripple voltage. The converter reduces the magnitude of output voltage ripples to 36% of the previous converter, and improves the power efficiency from 58% to 73%. The proposed converter is designed to obtain 1.6 mA driving capability with a output voltage around 5.3 ~ 5.4 V. A VCO is also added as the load to test the converter circuit. The VCO is insensititive to power supply noises. The proposed converter circuit is simulated in a TSMC 0.35-um Mixed-mode (2P4M) CMOS process.
|
28 |
Design of large time constant switched-capacitor filters for biomedical applicationsTumati, Sanjay 17 February 2005 (has links)
This thesis investigates the various techniques to achieve large time constants and the ultimate limitations therein. A novel circuit technique for the realization of large time constants for high pass corners in switched-capacitor filters is also proposed and compared with existing techniques. The switched-capacitor technique is insensitive to parasitic capacitances and is area efficient and it requires only two clock phases. The circuit is used to build a typical switched-capacitor front end with a gain of 10. The low pass corner is fixed at 200 Hz. The high pass corner is varied from 0.159Hz to 4 Hz and various performance parameters, such as power consumption, silicon area etc., are compared with conventional techniques and the advantages and disadvantages of each technique are demonstrated. The front-ends are fully differential and are chopper stabilized to protect against DC offsets and 1/f noise. The front-end is implemented in AMI0.6um technology with a supply voltage of 1.6V and all transistors operate in weak inversion with currents in the range of tens of nano-amperes.
|
29 |
Analog integrated circuit design techniques for high-speed signal processing in communications systemsHernandez Garduno, David 15 May 2009 (has links)
This work presents design techniques for the implementation of high-speed analog
integrated circuits for wireless and wireline communications systems.
Limitations commonly found in high-speed switched-capacitor (SC) circuits used
for intermediate frequency (IF) filters in wireless receivers are explored. A model
to analyze the aliasing effects due to periodical non-uniform individual sampling,
a technique used in high-Q high-speed SC filters, is presented along with practical
expressions that estimate the power of the generated alias components. The results
are verified through circuit simulation of a 10.7MHz bandpass SC filter in TSMC
0.35mu-m CMOS technology. Implications on the use of this technique on the design of
IF filters are discussed.
To improve the speed at which SC networks can operate, a continuous-time
common-mode feedback (CMFB) with reduced loading capacitance is proposed. This
increases the achievable gain-bandwidth product (GBW) of fully-differential ampli-
fiers. The performance of the CMFB is demonstrated in the implementation of a
second-order 10.7MHz bandpass SC filter and compared with that of an identical
filter using the conventional switched-capacitor CMFB (SC-CMFB). The filter using
the continuous-time CMFB reduces the error due to finite GBW and slew rate to less
than 1% for clock frequencies up to 72MHz while providing a dynamic range of 59dB and a PSRR- > 22dB. The design of high-speed transversal equalizers for wireline transceivers requires the implementation of broadband delay lines. A delay line based on a third-order
linear-phase filter is presented for the implementation of a fractionally-spaced 1Gb/s
transversal equalizer. Two topologies for a broadband summing node which enable
the placement of the parasitic poles at the output of the transversal equalizer beyond
650MHz are presented. Using these cells, a 5-tap 1Gb/s equalizer was implemented
in TSMC 0.35mu-m CMOS technology. The results show a programmable frequency
response able to compensate up to 25dB loss at 500MHz. The eye-pattern diagrams
at 1Gb/s demonstrate the equalization of 15 meters and 23 meters of CAT5e twistedpair
cable, with a vertical eye-opening improvement from 0% (before the equalizer)
to 58% (after the equalizer) in the second case. The equalizer consumes 96mW and
an area of 630mu-m x 490mu-m.
|
30 |
Construction of a Low-Noise Amplifier Chain With Programmable Gain and OffsetTallhage, Jonas January 2013 (has links)
A low-noise, variable gain amplier chain was constructed for interfa-cing a sensor to an ADC. During the course of the work two dierent methods -switched-capacitor circuits and chopping circuits - for dealing with 1/f noise wereinvestigated during the course of the work. The resulting circuit did not quitemeet the performance required by the specication, some possible improvementsare suggested.
|
Page generated in 0.0837 seconds