• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 64
  • 10
  • 7
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 198
  • 198
  • 58
  • 50
  • 48
  • 42
  • 37
  • 34
  • 31
  • 29
  • 26
  • 25
  • 22
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Aplicação de Inteligência Computacional para a Solução de Problemas Inversos de Transferência Radiativa em Meios Participantes Unidimensionais / Applying Computational Intelligence for the Solution of Inverse Problems of Radiative Transfer in Participating Media dimensional

Raphael Luiz Gagliardi 28 March 2010 (has links)
Esta pesquisa consiste na solução do problema inverso de transferência radiativa para um meio participante (emissor, absorvedor e/ou espalhador) homogêneo unidimensional em uma camada, usando-se a combinação de rede neural artificial (RNA) com técnicas de otimização. A saída da RNA, devidamente treinada, apresenta os valores das propriedades radiativas [ω, τ0, ρ1 e ρ2] que são otimizadas através das seguintes técnicas: Particle Collision Algorithm (PCA), Algoritmos Genéticos (AG), Greedy Randomized Adaptive Search Procedure (GRASP) e Busca Tabu (BT). Os dados usados no treinamento da RNA são sintéticos, gerados através do problema direto sem a introdução de ruído. Os resultados obtidos unicamente pela RNA, apresentam um erro médio percentual menor que 1,64%, seria satisfatório, todavia para o tratamento usando-se as quatro técnicas de otimização citadas anteriormente, os resultados tornaram-se ainda melhores com erros percentuais menores que 0,04%, especialmente quando a otimização é feita por AG. / This research consists in the solution of the inverse problem of radiative transfer for a participating media (emmiting, absorbing and/or scattering) homogeneous one-dimensional in one layer, using the combination of artificial neural network (ANN), with optimization techniques. The output of the ANN, properly trained presents the values of the radiative properties [w, to, p1 e p2] that are optimized through the following techniques: Particle Collision Algorithm (PCA), Genetic Algorithm (GA), Greedy Randomized Adaptive Search Procedure (GRASP) and Tabu Search (TS). The data used in the training are synthetics, generated through the direct problem without the introduction of noise. The results obtained by the (ANN) alone, presents an average percentage error minor than 1,64%, what it would be satisfying, however, for the treatment using the four techniques of optimization aforementioned, the results have become even better with percentage errors minor than 0,03%, especially when the optimization is made by the GA.
172

Uma investiga??o de algoritmos exatos e metaheur?sticos aplicados ao nonograma / Exact and metaheuristic algorithms research applied to nonogram

Oliveira, Camila Nascimento de 01 February 2013 (has links)
Made available in DSpace on 2014-12-17T15:48:07Z (GMT). No. of bitstreams: 1 CamilaNOT_DISSERT.pdf: 4321465 bytes, checksum: d103bd2da647997e8dfd0a8784c2060d (MD5) Previous issue date: 2013-02-01 / Nonogram is a logical puzzle whose associated decision problem is NP-complete. It has applications in pattern recognition problems and data compression, among others. The puzzle consists in determining an assignment of colors to pixels distributed in a N  M matrix that satisfies line and column constraints. A Nonogram is encoded by a vector whose elements specify the number of pixels in each row and column of a figure without specifying their coordinates. This work presents exact and heuristic approaches to solve Nonograms. The depth first search was one of the chosen exact approaches because it is a typical example of brute search algorithm that is easy to implement. Another implemented exact approach was based on the Las Vegas algorithm, so that we intend to investigate whether the randomness introduce by the Las Vegas-based algorithm would be an advantage over the depth first search. The Nonogram is also transformed into a Constraint Satisfaction Problem. Three heuristics approaches are proposed: a Tabu Search and two memetic algorithms. A new function to calculate the objective function is proposed. The approaches are applied on 234 instances, the size of the instances ranging from 5 x 5 to 100 x 100 size, and including logical and random Nonograms / O Nonograma ? um jogo l?gico cujo problema de decis?o associado ? NP-completo. Ele possui aplica??o em problemas de identifica??o de padr?es e de compacta??o de dados, dentre outros. O jogo consiste em determinar uma aloca??o de cores em pixels distribu?dos em uma matriz N  M atendendo restri??es em linhas e colunas. Um Nonograma ? codificado atrav?s de vetores cujos elementos especificam o n?mero de pixels existentes em cada coluna e linha de uma figura, sem especificar suas coordenadas. Este trabalho apresenta abordagens exatas e heur?sticas para solucionar o Nonograma. A Busca em Profundidade foi uma das abordagens exatas escolhida, por ser um exemplo t?pico de algoritmo de for?a bruta de f?cil implementa??o. Outra abordagem exata implementada foi baseada no algoritmo Las Vegas, atrav?s do qual se pretende investigar se a aleatoriedade introduzida pelo algoritmo Las Vegas traria algum benef?cio em rela??o ? Busca em Profundidade. O Nonograma tamb?m ? transformado em um Problema de Satisfa??o de Restri??es. Tr?s abordagens heur?sticas s?o propostas: uma Busca Tabu e dois algoritmos Mem?tico. Uma nova abordagem para o c?lculo da fun??o objetivo ? proposta neste trabalho. As abordagens s?o testadas em 234 casos de teste de tamanho entre 5 x 5 e 100 x 100, incluindo Nonogramas l?gicos e aleat?rios
173

Méthodes de résolution exactes et heuristiques pour un problème de tournées de techniciens

Mathlouthi, Ines 12 1900 (has links)
No description available.
174

Optimisation numérique appliquée à la gestion de crise : Approche basée sur un algorithme hybride pour la résolution du problème intégré d'ordonnancement et d'allocation des ressources. / Numerical optimization applied to crisis management : A hybrid approach for solving the integrated problem of scheduling and resource allocation.

Khorbatly, Mohamad 24 October 2018 (has links)
Les travaux présentes dans cette thèse s'inscrivent dans le cadre des méthodes d'évacuation des populations. Ils visent à étudier les capacités et modéliser le problème d'évacuation (blessés, sinistrés, enfants, personnes agées, etc.) dans une situation de crise (attentats terroristes, catastrophes naturelles, etc.) et développer des méthodes d'aide à la décision tout en proposant une meilleure planification et des plans optimaux d'évacuation des populations de la zone de crise vers les centres hospitaliers.Notre travail consiste à résoudre le problème d'évacuation de blessés dans des zones de crise avec une nouvelle vision qui consiste à optimiser le temps de transport et par conséquent sauver le maximum des personnes touchées par cette crise d'une façon dynamique, efficace et rapide pour minimiser la perte humaine. / The work presented in this thesis is part of human evacuation methods. It aims to study the capacities, model the evacuation problem (wounded, victims, children, elderly, etc.) in a crisis situation (terrorist attacks, natural disasters, etc.) and to develops methods for decision making while proposing better planning and optimal evacuation plans for populations from the crisis zone to hospitals.Our job is to solve the wounded evacuation problem in crisis zone with a new vision that optimizes the transport time and thus saving the maximum of causalities in a dynamic, efficient and fast way in order to minimize human loss.
175

Matheuristic algorithms for minimizing total tardiness in flow shop scheduling problems / Algorithmes métaheuristiques pour minimiser la somme des retards des problèmes d'ordonnancement de type flowshop

Ta, Quang-Chieu 12 February 2015 (has links)
Nous considérons dans cette thèse un problème d’ordonnancement de flow-shop de permutation où un ensemble de travaux doit être ordonnancé sur un ensemble de machines. Les travaux doivent être ordonnancés sur les machines dans le même ordre. L’objectif est de minimiser le retard total. Nous proposons des algorithmes heuristiques et des nouvelles matheuristiques pour ce problème. Les matheuristiques sont un nouveau type d’algorithmes approchés qui ont été proposés pour résoudre des problèmes d’optimisation combinatoire. Les méthodes importent de la résolution exacte au sein des approches (méta) heuristiques. Ce type de méthode de résolution a reçu un grand intérêt en raison de leurs très bonnes performances pour résoudre des problèmes difficiles. Nous présentons d’abord les concepts de base d’un problème d’ordonnancement. Nous donnons aussi une brève introduction à la théorie de l’ordonnancement et nous présentons un panel de méthodes de résolution. Enfin, nous considérons un problème où un flow shop de permutation à m-machine et un problème de tournées de véhicules sont intégrés, avec pour objectif la minimisation de la somme des retards. Nous proposons un codage direct d’une solution et une méthode de voisinage. Les résultats montrent que l’algorithme Tabou améliore grandement la solution initiale donnée par EDD et où chaque voyage ne délivre qu’un travail. / We consider in this thesis a permutation flow shop scheduling problem where a set of jobs have to be scheduled on a set of machines. The jobs have to be processed on the machines in the same order. The objective is to minimize the total tardiness. We propose heuristic algorithms and many new matheuristic algorithms for this problem. The matheuristic methods are a new type of approximated algorithms that have been proposed for solving combinatorial optimization problems. These methods embed exact resolution into (meta)heuristic approaches. This type of resolution method has received a great interest because of their very good performances for solving some difficult problems. We present the basic concepts and components of a scheduling problem and the aspects related to these components. We also give a brief introduction to the theory of scheduling and present an overview of resolution methods. Finally, we consider a problem where m-machine permutation flow shop scheduling problem and a vehicle routing problem are integrated and the objective is to minimize the total tardiness. We introduce a direct coding for a complete solution and a Tabu search for finding a sequence and trips. The results show that the TS greatly improves the initial solution given by EDD heuristic where each trip serves only one job at a time.
176

Planejamento da operação de sistemas de distribuição de energia elétrica com geradores distribuídos /

Chuma Cerbantes, Marcel January 2017 (has links)
Orientador: José Roberto Sanches Mantovani / Resumo: Neste trabalho propõe-se o desenvolvimento de uma ferramenta computacional para o planejamento da operação de curto prazo de sistemas de distribuição com geração distribuída (GD) considerando uma abordagem probabilística. Uma modelagem sequencial formulada com base na perspectiva das companhias de distribuição (DisCos) é proposta. As decisões operacionais da DisCo são inicialmente otimizadas no estágio de operação day-ahead (DA) e, então, na operação real-time (RT). A operação DA visa maximizar a diferença entre a energia vendida aos consumidores e as compras realizadas no mercado de eletricidade atacadista e da GD, ou seja, os lucros. No estágio RT, busca-se a minimização dos ajustes necessários para acomodar os desvios das quantidades previstas no planejamento DA. Modelos de cargas dependentes de tensão e restrições relacionadas à demanda são explicitamente formulados. A rede é representada através de equações de fluxo de potência AC completo. Propõe-se ainda a incorporação de um mecanismo para precificação nodal de potência reativa. Os modelos resultantes são caracterizados como programas de otimização matemática multiperíodo de grande porte não lineares e não convexos com variáveis contínuas e discretas. Um algoritmo pseudodinâmico baseado na meta-heurística Busca Tabu (BT) é proposto para solução do problema resultante de maneira eficaz, sem linearizações. Os resultados obtidos para alimentadores de distribuição de 69 e 135 barras ilustram a eficiência da metodologia pro... (Resumo completo, clicar acesso eletrônico abaixo) / Doutor
177

Contribution à la conception des filtres bidimensionnels non récursifs en utilisant les techniques de l’intelligence artificielle : application au traitement d’images / Contribution to the design of two-dimensional non-recursive filters using artificial intelligence techniques : application to image processing

Boudjelaba, Kamal 11 June 2014 (has links)
La conception des filtres a réponse impulsionnelle finie (RIF) peut être formulée comme un problème d'optimisation non linéaire réputé pour être difficile sa résolution par les approches conventionnelles. Afin d'optimiser la conception des filtres RIF, nous explorons plusieurs méthodes stochastiques capables de traiter de grands espaces. Nous proposons un nouvel algorithme génétique dans lequel certains concepts innovants sont introduits pour améliorer la convergence et rendre son utilisation plus facile pour les praticiens. Le point clé de notre approche découle de la capacité de l'algorithme génétique (AG) pour adapter les opérateurs génétiques au cours de la vie génétique tout en restant simple et facile à mettre en oeuvre. Ensuite, l’optimisation par essaim de particules (PSO) est proposée pour la conception de filtres RIF. Finalement, un algorithme génétique hybride (HGA) est proposé pour la conception de filtres numériques. L'algorithme est composé d'un processus génétique pur et d’une approche locale dédiée. Notre contribution vise à relever le défi actuel de démocratisation de l'utilisation des AG’s pour les problèmes d’optimisation. Les expériences réalisées avec différents types de filtres mettent en évidence la contribution récurrente de l'hybridation dans l'amélioration des performances et montrent également les avantages de notre proposition par rapport à d'autres approches classiques de conception de filtres et d’autres AG’s de référence dans ce domaine d'application. / The design of finite impulse response (FIR) filters can be formulated as a non-linear optimization problem reputed to be difficult for conventional approaches. In order to optimize the design of FIR filters, we explore several stochastic methodologies capable of handling large spaces. We propose a new genetic algorithm in which some innovative concepts are introduced to improve the convergence and make its use easier for practitioners. The key point of our approach stems from the capacity of the genetic algorithm (GA) to adapt the genetic operators during the genetic life while remaining simple and easy to implement. Then, the Particle Swarm Optimization (PSO) is proposed for FIR filter design. Finally, a hybrid genetic algorithm (HGA) is proposed for the design of digital filters. The algorithm is composed of a pure genetic process and a dedicated local approach. Our contribution seeks to address the current challenge of democratizing the use of GAs for real optimization problems. Experiments performed with various types of filters highlight the recurrent contribution of hybridization in improving performance. The experiments also reveal the advantages of our proposal compared to more conventional filter design approaches and some reference GAs in this field of application.
178

Aplicação de Inteligência Computacional para a Solução de Problemas Inversos de Transferência Radiativa em Meios Participantes Unidimensionais / Applying Computational Intelligence for the Solution of Inverse Problems of Radiative Transfer in Participating Media dimensional

Raphael Luiz Gagliardi 28 March 2010 (has links)
Esta pesquisa consiste na solução do problema inverso de transferência radiativa para um meio participante (emissor, absorvedor e/ou espalhador) homogêneo unidimensional em uma camada, usando-se a combinação de rede neural artificial (RNA) com técnicas de otimização. A saída da RNA, devidamente treinada, apresenta os valores das propriedades radiativas [ω, τ0, ρ1 e ρ2] que são otimizadas através das seguintes técnicas: Particle Collision Algorithm (PCA), Algoritmos Genéticos (AG), Greedy Randomized Adaptive Search Procedure (GRASP) e Busca Tabu (BT). Os dados usados no treinamento da RNA são sintéticos, gerados através do problema direto sem a introdução de ruído. Os resultados obtidos unicamente pela RNA, apresentam um erro médio percentual menor que 1,64%, seria satisfatório, todavia para o tratamento usando-se as quatro técnicas de otimização citadas anteriormente, os resultados tornaram-se ainda melhores com erros percentuais menores que 0,04%, especialmente quando a otimização é feita por AG. / This research consists in the solution of the inverse problem of radiative transfer for a participating media (emmiting, absorbing and/or scattering) homogeneous one-dimensional in one layer, using the combination of artificial neural network (ANN), with optimization techniques. The output of the ANN, properly trained presents the values of the radiative properties [w, to, p1 e p2] that are optimized through the following techniques: Particle Collision Algorithm (PCA), Genetic Algorithm (GA), Greedy Randomized Adaptive Search Procedure (GRASP) and Tabu Search (TS). The data used in the training are synthetics, generated through the direct problem without the introduction of noise. The results obtained by the (ANN) alone, presents an average percentage error minor than 1,64%, what it would be satisfying, however, for the treatment using the four techniques of optimization aforementioned, the results have become even better with percentage errors minor than 0,03%, especially when the optimization is made by the GA.
179

Algoritmo genético-tabu para a programação reativa da produção em um sistema de manufatura com recursos compartilhados

Duarte, Ageu Morais 20 November 2009 (has links)
Made available in DSpace on 2016-06-02T19:05:44Z (GMT). No. of bitstreams: 1 3127.pdf: 25890453 bytes, checksum: d4cbd429325861ff182934e97ff94c28 (MD5) Previous issue date: 2009-11-20 / Manufacturing systems with shared resources have been designed to meet the market needs, which require high quality products, low cost and the guarantee of the conditions agreed with the customer. The production scheduling in a manufacturing system is a complex task due to its combinatorial nature. Several studies show the use of search methods, such as Genetic Algorithms (GAs) and Tabu Search (TS), applied to the refinement of the production scheduling problem. The GAs present as disadvantages, the premature convergence, the lack of search intensification mechanisms in promising regions and also the lack of mechanisms which maintain the diversification of the population. In order to make GAs more effective in their search, by avoiding the premature convergence and ensuring the population diversity, some mechanisms are added to them so as to adjust their parameters during the search process, the so called Adaptative Genetic Algorithms (AGAs). However, these mechanisms do not guarantee the search intensification in the promising regions found. On the other hand, the TS presents mechanisms of search intensification and diversification, although its computational time depends on how optimal its initial solution is (solution by which the search process starts). In order to overcome the limitations of the traditional search methods, the Hybrid Algorithms (HAs) have been developed. They consist of the association of one method with another so that one helps the other in its deficiencies . This dissertation proposes the development of a Genetic-Tabu Algorithm (GTA) applied to the problem of the production reactive scheduling in a manufacturing system with shared resources, in order to ensure good compromise between makespan values and feedback time. The TS will be a functionality added to the AG and to the AGA, in other words, it will be a procedure to refine the individual(s) of the initial position and also to refine the individual obtained by the search methods. Tests have been conducted to determine which selection method (roulette or tournament) is more adequate for the definition of the neighborhood structure and also for the definition of the time to apply the mutation operator. Besides, other tests have been conducted by using different ways to calculate the makespan; one of them proposed in this dissertation and the others by Deriz (2007) and by Sanches (2008). / Os sistemas de manufatura com recursos compartilhados têm sido projetados para atender às necessidades do mercado, que demanda produtos que apresentem elevado padrão de qualidade, baixo custo e garantia das condições acordadas com o cliente. A programação da produção é uma tarefa complexa, pois é de natureza combinatória. Várias pesquisas apontam para a utilização de métodos de busca, como Algoritmos Genéticos (AGs) e Buscas Tabu (BTs), aplicados ao refinamento do problema da programação da produção. Os AGs apresentam como desvantagens a convergência prematura, a falta de mecanismos de intensificação da busca nas regiões promissoras e a falta de mecanismos que mantenham a diversificação da população. Para que os AGs possam ser mais efetivos em sua busca, de forma a evitar sua convergência prematura e garantir a diversidade populacional, acrescentam-se aos AGs, mecanismos que ajustam seus parâmetros no decorrer do processo de busca, os chamados Algoritmos Genéticos Adaptativos (AGAs). Esses mecanismos, no entanto, não garantem a intensificação da busca nas regiões promissoras encontradas. A BT, por sua vez, possui mecanismo de intensificação e diversificação da busca, porém o seu tempo computacional depende do quão ótimo é a sua solução inicial (solução pela qual se inicia o processo de busca). A fim de superar as limitações dos métodos de busca tradicionais, desenvolveram-se os Algoritmos Híbridos que agregam (ou associam) um método a outro, de forma que um auxilia o outro em sua deficiência . Neste trabalho, propõe-se o desenvolvimento de um Algoritmo Genético-Tabu (AGT) aplicado ao problema da programação reativa da produção em um sistema de manufatura com recursos compartilhados, a fim de garantir um bom compromisso entre valores de makespan e o tempo de obtenção da resposta. A BT será uma funcionalidade agregada ao AG e ao AGA, ou seja, é um procedimento que realizará o refinamento do(s) indivíduo(s) da população inicial e o refinamento do indivíduo obtido pelos métodos de busca. Realizam-se testes para definir qual método de seleção (roleta ou torneio) é mais bem aplicado ao problema, definição da estrutura da vizinhança e definição do momento de aplicação do operador de mutação. Além disso, foram também realizados testes com as diferentes formas de cálculo do makespan, sendo uma delas proposta neste trabalho e as demais propostas por Deriz (2007) e Sanches (2008).
180

Otimização por Nuvem de Partículas e Busca Tabu para Problema da Diversidade Máxima

Bonotto, Edison Luiz 31 January 2017 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2017-06-29T14:15:20Z No. of bitstreams: 1 arquivototal.pdf: 1397036 bytes, checksum: 303111e916d8c9feca61ed32762bf54c (MD5) / Made available in DSpace on 2017-06-29T14:15:20Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1397036 bytes, checksum: 303111e916d8c9feca61ed32762bf54c (MD5) Previous issue date: 2017-01-31 / The Maximu m Diversity Problem (MDP) is a problem of combinatorial optimization area that aims to select a pre-set number of elements in a given set so that a sum of the differences between the selected elements are greater as possible. MDP belongs to the class of NP-Hard problems, that is, there is no known algorithm that solves in polynomial time accurately. Because they have a complexity of exponential order, require efficient heuristics to provide satisfactory results in acceptable time. However, heuristics do not guarantee the optimality of the solution found. This paper proposes a new hybrid approach for a resolution of the Maximum Diversity Problem and is based on the Particle Swarm Optimization (PSO) and Tabu Search (TS) metaheuristics, The algorithm is called PSO_TS. The use of PSO_TS achieves the best results for known instances testing in the literature, thus demonstrating be competitive with the best algorithms in terms of quality of the solutions. / O Problema da Diversidade Máxima (MDP) é um problema da área de Otimização Combinatória que tem por objetivo selecionar um número pré-estabelecido de elementos de um dado conjunto de maneira tal que a soma das diversidades entre os elementos selecionados seja a maior possível. O MDP pertence a classe de problemas NP-difícil, isto é, não existe algoritmo conhecido que o resolva de forma exata em tempo polinomial. Por apresentarem uma complexidade de ordem exponencial, exigem heurísticas eficientes que forneçam resultados satisfatórios em tempos aceitáveis. Entretanto, as heurísticas não garantem otimalidade da solução encontrada. Este trabalho propõe uma nova abordagem híbrida para a resolução do Problema da Diversidade Máxima e está baseada nas meta-heurísticas de Otimização por Nuvem de Partículas (PSO) e Busca Tabu(TS). O algoritmo foi denominado PSO_TS. Para a validação do método, os resultados encontrados são comparados com os melhores existentes na literatura.

Page generated in 0.0719 seconds