• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Methanogenesis in oil sands tailings: an analysis of the microbial community involved and its effects on tailings densification

Li, Carmen Unknown Date
No description available.
2

Methanogenesis in oil sands tailings: an analysis of the microbial community involved and its effects on tailings densification

Li, Carmen 06 1900 (has links)
Densification of tailings slurries to mature fine tailings (MFT) is important in the oil sands industry for tailings inventory reduction, pore water recovery and tailings reclamation. The cause of methane release from the tailings pond of Shell Albian Sands (Albian) and the effects this process has on densification of Albian tailings was investigated. Citrate, added to tailings with polyacrylamide and hydrocarbon-diluent, was identified as the methanogenic substrate. Bacterial and Archaeal 16S rRNA gene sequences in Albian MFT were dominated by matches to Rhodoferax, some Clostridia and sulfate-reducing bacteria, and acetoclastic methanogens. Citrate-, diluent-, and polyacrylamide-amendments to Albian MFT did not cause a microbial shift over a 10-month laboratory incubation period. A potential pathway for microbial methane production in Albian MFT is proposed. Methane production and release from citrate-amended Albian MFT correlated to accelerated densification. Though diluent and polyacrylamide did not affect methanogenesis, they potentially affect gas bubble formation and release. / Microbiology and Biotechnology

Page generated in 0.1587 seconds