• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Volume change of the Tasman Glacier using remote sensing : a thesis submitted in fulfillment of the requirements for the degree of Master of Science in Geography at the University of Canterbury /

Thomas, Joel January 1900 (has links)
Thesis (M. Sc.)--University of Canterbury, 2009. / Typescript (photocopy). "Compiled April 3, 2009." Includes bibliographical references (p. 63-67). Also available via the World Wide Web.
2

Volume Change of the Tasman Glacier Using Remote Sensing

Thomas, Joel Spencer January 2008 (has links)
Mountain glaciers are expected to be the greatest contributor to sea level rise over the next century. Glaciers provide a good indicator of global climate and how to monitor their change is an increasingly important issue for climate science and for sea level rise forecasts. However, there has been little direct measurement of glacier volume change in New Zealand. This study explores the use of remotely sensed data for measuring glacier volume change from 1965 to 2006. Digital photogrammetric methods were used to extract topographic data of the Tasman Glacier from aerial photography and ASTER imagery for the years 1965, 1986, 2002 and 2006. SRTM C band data from 2000 were also analysed. Data were compared to an existing digital elvation model produced from the New Zealand Digital Topographic Database to test for their reliability. Using regression analysis, the data were filtered and points representing rock were used to correct points on the glacier ice for vertical bias. The quality of the data extracted from the aerial photography was good on rock and debris covered ice, but poor on snow. The data extracted from ASTER was much more reliable on snow in the upper glacier than the aerial photography, but was very poor in the lower debris covered region of the glacier. While the quality of the SRTM data is very high, there is a second order distortion present in the data that is evident over elevation differences. However, the overall mean difference of the SRTM rock from TOPODATA is close to zero. An overall trend could be seen in the data between dates. However, the 2006 ASTER data proved unreliable on the debris covered section of the glacier. Total volume change is therefore calculated for the period between 1965 and 2002. The data show a loss of 3:4km³ or 0:092km³ per year, an estimated 6% of the total ice in New Zealand. This is compared to estimates using the annual end of summer snowline survey between 1977 and 2005 of 1:78 km³, or 0:064km³ per year. The spatial resolution of ASTER makes high temporal resolution monitoring of volume change unlikely for the New Zealand glaciers. The infrequency of aerial photography, the high cost and vast time involved in extracting good quality elevation data from aerial photography makes it impractical for monitoring glacier volume change remotely. However, SRTM and other radar sensors may provide a better solution, as the data do not rely heavily on user processing.
3

Volume Change of the Tasman Glacier Using Remote Sensing

Thomas, Joel Spencer January 2008 (has links)
Mountain glaciers are expected to be the greatest contributor to sea level rise over the next century. Glaciers provide a good indicator of global climate and how to monitor their change is an increasingly important issue for climate science and for sea level rise forecasts. However, there has been little direct measurement of glacier volume change in New Zealand. This study explores the use of remotely sensed data for measuring glacier volume change from 1965 to 2006. Digital photogrammetric methods were used to extract topographic data of the Tasman Glacier from aerial photography and ASTER imagery for the years 1965, 1986, 2002 and 2006. SRTM C band data from 2000 were also analysed. Data were compared to an existing digital elvation model produced from the New Zealand Digital Topographic Database to test for their reliability. Using regression analysis, the data were filtered and points representing rock were used to correct points on the glacier ice for vertical bias. The quality of the data extracted from the aerial photography was good on rock and debris covered ice, but poor on snow. The data extracted from ASTER was much more reliable on snow in the upper glacier than the aerial photography, but was very poor in the lower debris covered region of the glacier. While the quality of the SRTM data is very high, there is a second order distortion present in the data that is evident over elevation differences. However, the overall mean difference of the SRTM rock from TOPODATA is close to zero. An overall trend could be seen in the data between dates. However, the 2006 ASTER data proved unreliable on the debris covered section of the glacier. Total volume change is therefore calculated for the period between 1965 and 2002. The data show a loss of 3:4km³ or 0:092km³ per year, an estimated 6% of the total ice in New Zealand. This is compared to estimates using the annual end of summer snowline survey between 1977 and 2005 of 1:78 km³, or 0:064km³ per year. The spatial resolution of ASTER makes high temporal resolution monitoring of volume change unlikely for the New Zealand glaciers. The infrequency of aerial photography, the high cost and vast time involved in extracting good quality elevation data from aerial photography makes it impractical for monitoring glacier volume change remotely. However, SRTM and other radar sensors may provide a better solution, as the data do not rely heavily on user processing.

Page generated in 0.0651 seconds