Spelling suggestions: "subject:"take"" "subject:"tape""
11 |
Training leaders to address congregational stress in the Cool Springs Baptist Church, Tate, GeorgiaChancey, David L., January 1996 (has links)
Thesis (D. Min.)--New Orleans Baptist Theological Seminary, 1996. / Includes abstract and vita. Includes bibliographical references (leaves 107-117).
|
12 |
Tate Modern in the Digital Age : A case study addressing the use of digital technology, audience interaction and participation at Tate ModernHammargren, Erika January 2017 (has links)
The previous Head of Digital at Tate, John Stack, argues that digital transformation and the audience’s increasing expectation of participation are the two major changes during the last ten years (Mitchell 2014). This thesis addresses Tate Modern’s use of digital technologies with focus on how audience interaction and participation is facilitated through the affordances of digital technology. Additionally, this thesis examines how Tate’s digital policies corresponds with Tate Modern’s actual practices, online and onsite, regarding audience participation and interaction. Discrepancies regarding Tate Modern’s practical approach to audience interaction and participation in relation to its policies were identified. The audience was not genuinely invited to participate through digital technologies during the examined period. Tate Modern, although being a leader in its field, still has some way to go in its digital development and its approach towards the audience before becoming a truly participatory museum.
|
13 |
Périodes des arrangements d'hyperplans et coproduit motivique. / Periods of hyperplane arrangements and motivic coproductDupont, Clement 26 September 2014 (has links)
Dans cette thèse, on s'intéresse à des questions relatives aux arrangements d'hyperplans du point de vue des périodes motiviques. Suivant un programme initié par Beilinson et al., on étudie une famille de périodes appelée polylogarithmes d'Aomoto et leurs variantes motiviques, vues comme éléments de l'algèbre de Hopf fondamentale de la catégorie des structures de Hodge-Tate mixtes, ou de la catégorie des motifs de Tate mixtes sur un corps de nombres. On commence par calculer le coproduit motivique d'une famille de telles périodes, appelées polylogarithmes de dissection génériques, en montrant qu'il est régi par une formule combinatoire. Ce résultat généralise un théorème de Goncharov sur les intégrales itérées. Puis, on introduit les bi-arrangements d'hyperplans, objets géométriques et combinatoires qui généralisent les arrangements d'hyperplans classiques. Le calcul de groupes de cohomologie relative associés aux bi-arrangements d'hyperplans est une étape cruciale dans la compréhension du coproduit motivique des polylogarithmes d'Aomoto. On définit des outils cohomologiques et combinatoires pour calculer ces groupes de cohomologie, qui éclairent dans un cadre global des objets classiques tels que l'algèbre d'Orlik-Solomon. / In this thesis, we deal with some questions about hyperplane arrangements from the viewpoint of motivic periods. Following a program initiated by Beilinson et al., we study a family of periods called Aomoto polylogarithms and their motivic variants, viewed as elements of the fundamental Hopf algebra of the category of mixed Hodge-Tate structures, or the category of mixed Tate motives over a number field. We start by computing the motivic coproduct of a family of such periods, called generic dissection polylogarithms, showing that it is governed by a combinatorial formula. This result generalizes a theorem of Goncharov on iterated integrals. Then, we introduce bi-arrangements of hyperplanes, which are geometric and combinatorial objects which generalize classical hyperplane arrangements. The computation of relative cohomology groups associated to bi-arrangements of hyperplanes is a crucial step in the understanding of the motivic coproduct of Aomoto polylogarithms. We define cohomological and combinatorial tools to compute these cohomology groups, which recast classical objects such as the Orlik-Solomon algebra in a global setting.
|
14 |
La conjecture d'André-Pink : orbites de Hecke et sous-variétés faiblement spéciales / The André-Pink conjecture : Hecke orbits and weakly special subvarietiesOrr, Martin 25 September 2013 (has links)
La conjecture d'André-Pink affirme qu'une sous-variété d'une variété de Shimura ayant une intersection dense avec une orbite de Hecke est faiblement spéciale. On démontre cette conjecture dans le cas de courbes dans une variété de Shimura de type abélien, ainsi que dans certains cas de sous-variétés de dimension supérieure. Ceci est un cas spécial de la conjecture de Zilber-Pink. C'est une généralisation de théorèmes d'Edixhoven et Yafaev quand l'orbite de Hecke se compose de points spéciaux, de Pink quand l'orbite de Hecke se compose de points Galois génériques, et de Habegger et Pila quand la variété de Shimura est un produit de courbes modulaires. Notre démonstration de la conjecture d'André-Pink pour les courbes dans l'espace de modules des variétés abéliennes principalement polarisées est basée sur la méthode de Pila et Zannier, utilisant une variante forte du théorème de comptage de Pila-Wilkie. On obtient les bornes galoisiennes requises grâce au théorème d'isogénie de Masser et Wüstholz. Afin de relier les bornes sur les isogénies aux hauteurs, on démontre également diverses bornes concernant l'arithmétique des formes hermitiennes sur l'anneau d'endomorphismes d'une variété abélienne. Afin d'étendre le résultat sur la conjecture d'André-Pink aux courbes dans les variétés de Shimura de type abélien et à certains cas de sous-variétés de dimension supérieure, on étudie les propriétés fonctorielles de plusieurs variantes des orbites de Hecke. Un chapitre concerne les rangs des groupes de Mumford-Tate de variétés abéliennes complexes. On y démontre une minoration de ces rangs en fonction de la dimension de la variété abélienne, étant donné que ses sous-variétés abéliennes simples sont deux à deux non isogènes. / The André-Pink conjecture predicts that a subvariety of a Shimura variety which has dense intersection with a Hecke orbit is weakly special. We prove this conjecture for curves in a Shimura variety of abelian type, as well as for certain cases for subvarieties of higher dimension. This is a special case of the Zilber-Pink conjecture. It generalises theorems of Edixhoven and Yafaev when the Hecke orbit consists of special points, of Pink when the Hecke orbit consists of Galois generic points, and of Habegger and Pila when the Shimura variety is a product of modular curves. Our proof of the André-Pink conjecture for curves in the moduli space of principally polarised abelian varieties is based on the Pila-Zannier method, using a strong form of the Pila-Wilkie counting theorem. The necessary Galois bounds are obtained from the Masser-Wüstholz isogeny theorem. In order to relate isogeny bounds to heights, we also prove various bounds concerning the arithmetic of Hermitian forms over the endomorphism ring of an abelian variety. In order to extend the result on the André-Pink conjecture to curves in Shimura varieties of abelian type and to some cases of higher-dimensional subvarieties, we study the functorial properties of Hecke orbits and variations thereof. One chapter concerns the ranks of Mumford-Tate groups of complex abelian varieties. We prove a lower bound for these ranks in terms of the dimension of the abelian variety, subject to the condition that the simple abelian subvarieties are pairwise non-isogenous.
|
15 |
Ações de p-grupos sobre produto de esferas, co-homologia dos grupos virtualmente cíclicos (\'Z IND.a\' X| \'Z IND. b\' )X| Z e [\'Z IND.a\' X| (\'Z IND.b\' X \'Q IND.2 POT. i\' )] X| Z e cohomologia de Tate / Actions of groups on sphere product, cohomology of virtually cyclic groups (ZaX| Zb)X| Z and [ZaX|(ZbXQ2i)]X|Z and Tate CohomologySoares, Marcio de Jesus 09 October 2008 (has links)
Neste trabalho inicialmente estudamos o rank da co-homologia do espaço dos pontos fixos de uma \'Z IND.p\' - ação semilivre sobre espaços X~p \' S POT. n\' x \'S POT.n\' e X~p \'S POT.n\' x \'S POT.n\' x \'S POT.n\' , com n>0. Em seguida, estudamos uma extensão para ações de p-grupos sobre espaços X~p \'S POT.n\' X \'S POT.m\', com 0< n \'< OU =\' m. Como parte do material utilizado demos uma descrição do diferencial d1 de uma seqüência espectral que converge para co-homologia equivariante de Tate, bem como uma versão da Fórmula de Künneth para a co-homologia equivariante de Tate. Na parte final, motivado pelo problemas de descrição de espaços de órbita de ações de grupos infinito, calculamos as co-homologias dos grupos virtualmente cíclicos (\'Z IND.a\' X| \' Z IND. b\' )X| Z e [\'Z POT.a\' X|(\'Z IND.b\' X \'Q IND. 2 POT.i\') ]X| Z / In this work is studied the rank of the fixed point set of a semifree action on spaces X~p \'S POT.n\' X \'S POT.n\' and X~p \'S POT.n\' X \'S POT.n\' X \'S POT.n\' , with n>0. We also consider the extension of the result for actions of p-groups on spaces X~p \'SPOT.n\' X \' S POT.m\' , with 0<n \'< OR =\' m. As result of the techniques used, we give a description of the differential d1 of a spectral sequence that converges to Tate equivariant cohomology, as well a version of the Künneth Formule to Tate equivariant cohomology. At the end, motivated by the space form problem for infinite groups we compute the cohomology of the virtually cyclic groups (\'Z IND. a\' X| \'Z IND. b\' )X| Z and [\'Z IND.a\' X|(\'Z IND. b\' X \'Q IND2 POT. i\' )] X| Z
|
16 |
Sobre certas teorias de cohomologia de grupos e aplicações / About some theories of cohomology groups and applicationsCosta, Jessica Cristina Rossinati Rodrigues da [UNESP] 02 March 2016 (has links)
Submitted by JESSICA CRISTINA ROSSINATI RODRIGUES DA COSTA null (jessica_rossinati@hotmail.com) on 2016-03-28T00:40:44Z
No. of bitstreams: 1
dissertvfinal.pdf: 1238464 bytes, checksum: e56a7f4475bc759e772581a2558f03d0 (MD5) / Rejected by Ana Paula Grisoto (grisotoana@reitoria.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo as orientações abaixo:
No campo “Versão a ser disponibilizada online imediatamente” foi informado que seria disponibilizado o texto completo porém no campo “Data para a disponibilização do texto completo” foi informado que o texto completo deverá ser disponibilizado apenas 6 meses após a defesa.
Caso opte pela disponibilização do texto completo apenas 6 meses após a defesa selecione no campo “Versão a ser disponibilizada online imediatamente” a opção “Texto parcial”. Esta opção é utilizada caso você tenha planos de publicar seu trabalho em periódicos científicos ou em formato de livro, por exemplo e fará com que apenas as páginas pré-textuais, introdução, considerações e referências sejam disponibilizadas.
Se optar por disponibilizar o texto completo de seu trabalho imediatamente selecione no campo “Data para a disponibilização do texto completo” a opção “Não se aplica (texto completo)”. Isso fará com que seu trabalho seja disponibilizado na íntegra no Repositório Institucional UNESP.
Por favor, corrija esta informação realizando uma nova submissão.
Agradecemos a compreensão. on 2016-03-28T17:58:50Z (GMT) / Submitted by JESSICA CRISTINA ROSSINATI RODRIGUES DA COSTA null (jessica_rossinati@hotmail.com) on 2016-03-29T01:46:02Z
No. of bitstreams: 1
dissertvfinal.pdf: 1238464 bytes, checksum: e56a7f4475bc759e772581a2558f03d0 (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-03-29T17:36:33Z (GMT) No. of bitstreams: 1
costa_jcrr_me_sjrp.pdf: 1238464 bytes, checksum: e56a7f4475bc759e772581a2558f03d0 (MD5) / Made available in DSpace on 2016-03-29T17:36:33Z (GMT). No. of bitstreams: 1
costa_jcrr_me_sjrp.pdf: 1238464 bytes, checksum: e56a7f4475bc759e772581a2558f03d0 (MD5)
Previous issue date: 2016-03-02 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Este trabalho apresenta um estudo das teorias de cohomologia ordinária de grupos, da cohomologia de Tate e de Farrel, e algumas aplicações no contexto da Topologia Algébrica. Dentro desse contexto foram desenvolvidos, através da cohomologia de Tate, tópicos dentro da teoria de grupos com cohomologia periódica, detalhando resultados e condições necessárias e suficientes para um grupo ter essa propriedade. Como aplicação dessa teoria vimos um critério para uma função de uma esfera de homotopia em um CW-complexo ter uma (H,G)-coincidência. Também foram desenvolvidos tópicos sobre grupos satisfazendo certas condições de finitude, como por Exemplo grupos de dualidade virtual e, através da cohomologia de Farrell, apresentamos uma obstrução para grupos de dualidade virtual satisfazerem o isomorfismo de dualidade da teoria de Bieri e Eckmann. / In this work we present a study of the ordinary cohomology of groups, Tate cohomology and Farrell cohomology, and some applications in the context of Algebraic Topology. In this context we were developed topics of the theory of groups with periodic cohomology, detailing results and necessary and sufficient conditions for a group to have this property. As an application of this theory we present a criterion for a map defined in sphere homotopy in a CW-complex to have a (H,G)-coincidence. Also, we have developed some topics about groups that satisfy certain finiteness conditions, as for example, virtual duality groups. Besides, through Farrell cohomology, we present an obstruction for virtual duality groups satisfying the duality isomorphism of the theory due to Bieri and Eckmann. / FAPESP: 2013/23980-0
|
17 |
On some generalizations of Tate Cohomology: an overview / On some generalizations of Tate Cohomology: an overviewPaganin, Matteo 25 September 2017 (has links)
This paper is an overview of the developments and generalizations of Tate Cohomology. The number of such generalizations is high and the literature on many of them is vast. Hence, we do not pretend to give a complete account of all the branches that have developed from the original ideas of Tate. This is rather an overview of how the ideas developed. / Este artículo es una revisión del desarrollo y generalizaciones de la cohomología de Tate. El número de tales generalizaciones es alto y la literatura en torno a muchas de ellas es vasta. Por consiguiente, no pretendemos dar un recuento completo de las ramas que se desprenden de las ideas originales de Tate; esto más bien representa un bosquejo de cómo estas ideas se han ido desarrollando.
|
18 |
Ações de p-grupos sobre produto de esferas, co-homologia dos grupos virtualmente cíclicos (\'Z IND.a\' X| \'Z IND. b\' )X| Z e [\'Z IND.a\' X| (\'Z IND.b\' X \'Q IND.2 POT. i\' )] X| Z e cohomologia de Tate / Actions of groups on sphere product, cohomology of virtually cyclic groups (ZaX| Zb)X| Z and [ZaX|(ZbXQ2i)]X|Z and Tate CohomologyMarcio de Jesus Soares 09 October 2008 (has links)
Neste trabalho inicialmente estudamos o rank da co-homologia do espaço dos pontos fixos de uma \'Z IND.p\' - ação semilivre sobre espaços X~p \' S POT. n\' x \'S POT.n\' e X~p \'S POT.n\' x \'S POT.n\' x \'S POT.n\' , com n>0. Em seguida, estudamos uma extensão para ações de p-grupos sobre espaços X~p \'S POT.n\' X \'S POT.m\', com 0< n \'< OU =\' m. Como parte do material utilizado demos uma descrição do diferencial d1 de uma seqüência espectral que converge para co-homologia equivariante de Tate, bem como uma versão da Fórmula de Künneth para a co-homologia equivariante de Tate. Na parte final, motivado pelo problemas de descrição de espaços de órbita de ações de grupos infinito, calculamos as co-homologias dos grupos virtualmente cíclicos (\'Z IND.a\' X| \' Z IND. b\' )X| Z e [\'Z POT.a\' X|(\'Z IND.b\' X \'Q IND. 2 POT.i\') ]X| Z / In this work is studied the rank of the fixed point set of a semifree action on spaces X~p \'S POT.n\' X \'S POT.n\' and X~p \'S POT.n\' X \'S POT.n\' X \'S POT.n\' , with n>0. We also consider the extension of the result for actions of p-groups on spaces X~p \'SPOT.n\' X \' S POT.m\' , with 0<n \'< OR =\' m. As result of the techniques used, we give a description of the differential d1 of a spectral sequence that converges to Tate equivariant cohomology, as well a version of the Künneth Formule to Tate equivariant cohomology. At the end, motivated by the space form problem for infinite groups we compute the cohomology of the virtually cyclic groups (\'Z IND. a\' X| \'Z IND. b\' )X| Z and [\'Z IND.a\' X|(\'Z IND. b\' X \'Q IND2 POT. i\' )] X| Z
|
19 |
Géométrie Arithmétique sur les variétés Abéliennes : minoration explicite de la hauteur de Faltings et borne sur la torsion / Aritmethic geometry on Abelian varieties : explicit lower bound on the faltings height and bound on torsionWagener, Benjamin 22 November 2016 (has links)
Ce travail comporte essentiellement deux conclusions. D'une part nous déterminons une minoration de la hauteur de Faltings d'une variété abélienne quelconque sur un corps de nombres faisant intervenir de nouveaux invariants non archimédiens. Il s'agit de la première partie de ce travail dans lequel nous introduisons systématiquement ces invariants. Ils sont liés à la géométrie non archimédienne aux places de mauvaise réduction des variétés abéliennes.Dans une deuxième partie nous donnons une évaluation approximative de ces invariants nous permettant d'établir une minoration de la hauteur de Faltings faisant intervenir le nombre de composantes de la fibre spéciale du modèle de Néron des variétés abéliennes aux places de mauvaise réduction.On déduit de ces estimations un corollaire qui fournit une borne sur le cardinal du groupe des points rationnels de torsion des variétés abéliennes faisant essentiellement intervenir la hauteur de Faltings. Cette borne est jusqu'à présent la meilleure connue. / This thesis leads essentially to two conclusions. On the one hand we determine a lower bound for the Faltings height of abelian varieties over number fields in which enter new non-archimedean invariants. It consists in the first part of this work in which we introduce systematically this invariants. They are directly linked to the non-archimedean geometry of abelian varities at places of bad reduction.In a second part we provides an approximative evaluation of this invariants which leads to a lower bound on the Faltings heights in terms of the number of components of the special fiber of the Néron model of abelian varieties at places of bad reduction.We deduce from this estimates a corollary that provides an upper bound on the cardinality of the group of rational torsion points of abelian varieties essentially in terms of the Falting height. This bound is the best bound known till now.
|
20 |
Multivariable (φ,Γ)-modules and representations of products of Galois groupsPupazan, Gheorghe 22 October 2021 (has links)
Für eine Primzahl p, sei L eine endliche Erweiterung von $QQ_p$ mit Ganzheitsring $O_L$ und Restklassenk\"{o}rper $kk_L$. Sei ferner n eine positive ganze Zahl. In dieser Arbeit beschreiben wir die Kategorie der endlich erzeugten stetigen Darstellungen der n-ten direkten Potenz der absoluten Galoisgruppe $G_L$ von L mit Koeffizienten in $O_L$, unter Verwendung einer verallgemeinerten Version der $(phi, Gamma)$-Moduln von Fontaine.
In Kapitel 4 beweisen wir, dass die Kategorie der stetigen Darstellungen der n-ten direkten Potenz von $G_L$ auf endlichen dimensionalen $kk_L$-Vektorräumen und die Kategorie étaler $(phi, Gamma)$-Moduln über einem n-variablen Laurentreihenring über $kk_L$ äquivalent sind. In Kapitel 5 erweitern wir diese Äquivalenz, um zu beweisen, dass die Kategorie der stetigen Darstellungen der n-ten direkten Potenz von $G_L$ auf endlich erzeugten $O_L$-Moduln und die Kategorie étaler $(phi, Gamma)$-Moduln über einem n-variablen Laurentreihenring über $O_L$ äquivalent sind.
Einerseits erhalten wir, wenn wir n=1 und L willkürlich lassen, die Verfeinerung von Fontaine ursprünglicher Konstruktion gemäß Kisin, Rin und Schneider, die Lubin-Tate Theorie verwenden. Wenn wir andererseits n willkürlich lassen und $L=QQ_p$, erhalten wir die Theorie von Zábrádi von multivariablen zyklotomischen $(phi, Gamma)$-Moduln, die Fontaines Verwendung einer einzelnen freien Variablen verallgemeinert. Daher bietet unsere Arbeit einen gemeinsamen Rahmen für diese beiden Verallgemeinerungen. / For a prime number p, let L be a finite extension of $QQ_p$ with ring of integers $O_L$ and residue field $kk_L$. We also let n be a positive integer. In this thesis we describe the category of finitely generated continuous representations of the n-th direct power of the absolute Galois group $G_L$ of L with coefficients in $O_L$ using a generalized version of Fontaine's $(phi, Gamma)$-modules.
In Chapter 4 we prove that the category of continuous representations of the n-th direct power of $G_L$ on finite dimensional $kk_L$-vector spaces is equivalent to the category of étale $(phi, Gamma)$-modules over a n-variable Laurent series ring over $kk_L$. In Chapter 5 we extend this equivalence to prove that the category of continuous representations of the n-th direct power of $G_L$ on finitely generated $O_L$-modules is equivalent to the category of étale $(phi, Gamma)$-modules over a n-variable Laurent series ring over $O_L$.
On the one hand, if we let n=1 and $L$ be arbitrary, we obtain the refinement of Fontaine's original construction due to Kisin, Rin and Schneider, which uses Lubin-Tate theory. On the other hand, if we let n be arbitrary and $L=QQ_p$, we recover Zábrádi's theory of multivariable cyclotomic $(phi,Gamma)$-modules that generalizes Fontaine's use of a single free variable. Therefore, our thesis provides a common framework for both of these generalizations.
|
Page generated in 0.0584 seconds