• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 9
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studium biodegradace syrovátky termofilními bakteriemi / Study of Whey Biodegradation by thermophilic Bacteria

Fischerová, Lenka January 2008 (has links)
This thesis deals with the possibilities of biodegradation of whey by the means of a mixed thermophilic aerobic bacterial culture of the Bacillus and Thermus genera. After protein had been removed, the whey was used as a medium for cultivation of the thermophilic microorganisms. The cultivations took their course in a fermentation unit and in the Erlenmayer flasks in a heated shaker in a whey medium. The bioengineering characteristics of the cultivation processes and the degree of biodegradation of the whey were evaluated. Scale of the whey biodegration was judged through the analytical characteristics – concentration of biomass, laktose and a chemical oxygen demand (COD). A decrease of CHSK was detected in all cultivations. Maximal reduction of CHSK was happend always in c. first half of each exponential phase growt, i.e. about 15 ± 3 % after first growth phase and sumarily about 62 ± 4 % after second growth phase.
2

Využití termofilních mikroorganismů při biodegradaci lignocelulosových materiálů / Thermophilic Microorganisms Application for Lignocellulose Materials Biodegradation

Klašková, Lenka January 2008 (has links)
The plant cell wall consists of several layers: cellulose, hemicellulose, lignin and pectin. These biopolymers are degraded by many microorganisms. Extracellular enzymes are used for biodegradation by microorganisms. This thesis was focused on studying the impact of cultivation conditions on the production of extracellular enzymes at carboxymethyl cellulase and pectin when a mixed thermophilic culture containing Bacillus and Thermus microorganisms is used. The cultivation was carried out in flasks on a shaking machine with a shaking speed of 99 min-1 at a temperature of 60°C. The monitoring covered cellulolytic and polygalacturonase activities, protein concentration by the Biuret method, concentration of reducing substances by the Somogyi and Nelson methods, and the temperature optimum.
3

Biodegradace s využitím termofilních mikroorganismů / Thermophilic microorganisms application to biodegradation

Varmužová, Tamara January 2009 (has links)
This thesis is focused on study of biodegradability of modified polyurethane elastomeric films in synthetic medium with minerals and vitamins on tempered shaker by mixed thermophilic aerobic bacterial culture Bacillus and Thermus genera. In most cases addition of all used fillers (carboxymethyl cellulose, hydroxyethyl cellulose, acetylated cellulose, acetylated starch and glutein) led to increased biodegradability of elastomeric films with modifying agent in comparison with elastomeric films without modifying agent (referential). The growth of cultures was strongly increased in presence of elastomeric films modified by 10 % acetylated cellulose and 10 % carboxymethyl cellulose. Elastomeric film biodegradation mechanism included probably two stages: abiotic destruction of elastomeric films and consequent utilization of degradation products by bacterial culture.
4

Nové způsoby isolace PHA z bakteriální biomasy / Novel approaches for PHA isolation from bacterial biomass

Dlouhá, Karolína January 2021 (has links)
The aim of this diploma thesis was study of the isolation of polyhydroxyalkanoates using a commercial surfactant and selected biosurfactants, which were sophorolipids, coconut soap, lecithin, lauryl glucoside, coco glucoside and cocamidopropyl betaine. PHA was isolated from Schlegelella thermodepolymerans DSM 15344, where the amount of NaCl in the production medium was first optimized. The molecular weight of the isolated polymer was analyzed by SEC-MALS. The largest structural changes were recorded for coconut soap. Possible impurities in the isolated polymer were analyzed by infrared spectrometry (ATR-FTIR). The least protein contamination of the polymer was recorded with coconut soap. From the above biosurfactants, coconut soap, lauryl glucoside and coco glucoside were selected, because the highest purity of PHA was obtained. However, coconut soap had the greatest potential. The isolation temperature and surfactant concentration were optimized for selected biosurfactants. The best results were obtained at 90 °C and a concentration of 5 g/L. Furthermore, the versatility of the isolation method was tested using selected biosurfactants on various thermophilic microorganisms, which were Chelatococcus composti DSM 101465, Schlegelella thermodepolymerans DSM 15264, Tepidimonas taiwanensis LMG 22826 and Aneurinibacillus thermoaerophilus H1.
5

Identifikace a izolace PHA produkujících bakterií / Identification and isolation of PHA producing bacteria

Pernicová, Iva January 2021 (has links)
Polyhydroxyalkanoates (PHA) are microbial storage polyesters that represent a renewable and environmentally friendly alternative to petrochemical plastics. However, their production and use are severely disadvantaged by the high production cost. The use of extremophilic PHA producers is one of the ways to reduce the cost of PHA production. Extremophiles bring numerous advantages resulting from the high robustness of the process against microbial contamination. In this doctoral thesis, attention was focused on the study of PHA production using selected halophilic and thermophilic microorganisms. Representatives of the genus Halomonas were mainly from public collections of microorganisms. Two promising PHA producers on waste frying oil were identified, namely Halomonas hydrothermalis and Halomonas neptunia. Both strains achieved good PHA yields in flask experiments. With the addition of suitable structural precursors, they were also able to produce copolymers with interesting material properties. However, in the proposed thesis, the main emphasis was placed on the study of PHA production using thermophilic microorganisms. As a part of the work, the isolation of thermophilic PHA producers from various thermophilic consortia (active sludge, compost, etc.) was performed. During isolations experiments, an original isolation procedure was designed using changes in osmotic pressure, the so-called osmoselection. Dozens of promising thermophilic PHA producers were obtained thanks to this original approach. They were taxonomically classified using 16S rRNA and tested for production potential. The most promising PHA producer was the isolate which was classified as Aneurinibacillus sp. H1. This bacterium is able to utilize a variety of substrates, including waste glycerol, to produce PHA. Even more important is the capability of synthesizing copolymers with a high content of 4-hydroxybutyrate. The monomer composition of the PHA copolymer and thus the material properties of the prepared copolymer can be controlled by suitable adjustment of the cultivation conditions. The prepared copolymer P(3HB-co-4HB) has unique properties and the great application potential in numerous high-end applications, for example in the field of health care, food industry or cosmetics.
6

Biodegradace organických látek aplikací termofilní kultury / Application of thermophilic Culture for Organic Compounds Biodegradation

Piechová, Jana January 2008 (has links)
The aim of this work is focused on biodegradability study of modified polyurethane materials (foams and foils) in glukose medium and biodegradation of whey. The biodegradability was tested with using mixed thermophilic aerobic bacterial culture of the Bacillus and Thermus genera. The cultivations were practised in the fermentor and in Erlenmayer flasks in a heated shaker. Maximal reduction of COD and culture growth has been achieved by biodegradation of polyuretane in the fermentor. Main effect of degradation was abiotic destruction of PUR materials and consequent utilization of degradation products by bacterial culture. These tests indicated that the best modification agent for biodegradation was 10% carboxymethyl cellulose. The polyurethane foam was more decomposed then the polyurethane foil. Biodegradation of whey without proteins in the fermentor was detected decrease of CHSK and lactose concentration about 50 % in 20th hour. Optimal conditions for whey biodegradation with the thermophilic bacterial culture were pH 6,5 and temperature 60 °C.
7

Utilizace syrovátky termofilními mikroorganismy / Whey utilization with thermophilic microorganisms

Rychová, Alexandra January 2011 (has links)
This diploma thesis studies the utilization of whey using thermophilic bacteria of the genus Thermus and Geobacillus. The whey stripped off proteins was used as a cultivation medium during experiments. The cultivation took place in the Erlenmeyer flasks, to assess the optimal conditions for microrganism’s growth. During the cultivation in the bioreactor, growth curves were established. The amount of whey utilization was assessed by analytical methods that determine the concentration of reducing saccharides (lactose) and chemical oxygen demand (COD) while studying the optimal conditions and a method determining the concentration of reducing saccharides during growth curves analysis.
8

Molekulárně biologická charakterizace vybraných producentů PHA / Molecular characterization of selected PHA producers

Kubáčková, Eliška January 2020 (has links)
This diploma thesis focuses on the molecular characterization of selected PHA producers. Within this work, the PHA producing thermophilic isolates originating from the samples of activated sludge and compost were identified and characterized using molecular biological methods. By sequencing the 16S rRNA gene, the thermophilic isolates were identified and taxonomically classified into the Firmicutes bacterial phylum. In these bacterial isolates, the ability to produce PHA at the genotype level was determined by conventional PCR detection of the phaC gene encoding PHA synthase, which is a key enzyme in PHA biosynthesis. Class I, II and IV PHA synthases were detected in most of the isolated bacteria, wherein class I and II PHA synthases are not characteristic for these bacterial genera. The largest proportion of isolates was identified for the species of thermophilic bacterium Aneurinibacillus thermoaerophilus, in which class IV PHA synthase was detected. In the second part of the diploma thesis, the RT-qPCR method was implemented to study the expression of selected genes of the bacterium Cupriavidus necator H16 involved in PHA metabolism. As part of the implementation of this method, PCR-based detection of selected genes was optimized and quantification of genes using real-time PCR was performed. The tested method included steps of RNA isolation, cDNA synthesis and quantification of gene segments for which the critical points of the method were determined based on the obtained data.
9

Screening biotechnologického potenciálu vybraných zástupců rodu Geobacillus a dalších příbuzných rodů / Screening of biotechnological potential of selected members of the genus Geobacillus and other related genuses

Kouřilová, Xenie January 2019 (has links)
This diploma thesis deals with selected thermophilic representatives of genera Geobacillus, Saccharococcus and Bacillus, taking screening of its biotechnological potential into account. Bacteria from the first two genera came from Czech and German collection of microorganisms, while bacteria of genus Bacillus were natural isolates. Researched strains were examined from a viewpoint of carbon source utilization and furthermore, production of biosurfactants, extracellular hydrolytic enzymes (protease, amylase, lipase, cellulase, xylanase), organic acids, antimicrobial agents and microbial plastics – polyhydroxyalkanoates was also tested. Bacteria S. thermophilus, G. uzenensis and G. zalihae evinced a substantial ability of biosurfactant production. Strains G. jurassicus, G. uzenensis, G. gargensis and G. lituanicus were capable of intensive production of all tested, technologically significant enzymes. Highest antimicrobial effects were reached with bacteria G. stearothermophilus and G. thermocatenulatus. Largest production of acetic acid was achieved with G. jurassicus and lactic acid with G. thermodenitrificans. Ability to produce polyhydroxyalkanoates was proved at genotype level by some cultures only, however at fenotype level, response was negative. On the contrary, bacteria genus Bacillus were able to produce polyhydroxyalkanoates, although in small amounts under given circumstances. With remaining researched metabolites, production ability was considerably lower, compared to genera Geobacillus and Saccharococcus.

Page generated in 0.0475 seconds