• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Low Velocity Impact Characterization Of Monolithic And Laminated Aa 2024 Plates By Drop Weight Test

Kalay, Yunus Emre 01 January 2003 (has links) (PDF)
The objective of this study was to investigate the low velocity impact behavior of both monolithic and laminated aluminum alloy plates. For this purpose, a drop-weight test unit was used. The test unit included the free fall and impact of an 8 kg hammer with an 8 mm punching rod from 0.5 m to 4 m. The relationship between the change in static mechanical properties (hardness, ultimate tensile strength, yield strength, strain hardening rate) and low velocity impact behavior of monolithic aluminum plates were investigated. Tested material was AA 2024, heat treatable aluminum alloy, which was artificially aged to obtain a wide range of mechanical properties. In the second stage of the study, the relationship between the low velocity impact behavior of laminated plates was compared with that of monolithic aluminum plates at identical areal densities. For this purpose, a series of AA 2024 thin plates were combined with different types of adhesives (epoxy, polyurethane or tape). Finally, fracture surface of the samples and microstructure at the deformation zone were examined with both scanning electron microscope and optical microscope. It is found that the ballistic limit velocities of AA 2024 plates increase with increase in hardness, yield strength and ultimate tensile strength. It is also found that a linear relation exists between the ballistic limit velocity and strain hardening rate or hardness. When the low velocity impact behaviors of laminated and monolithic targets were compared, it was seen that monolithic targets have a higher ballistic limit velocity values for from the 2.5 to 10 mm thick targets. It was also observed that adhesives are not so effective to strengthen the low velocity impact performance. On the other hand, with increasing Charpy impact energy, penetration and perforation behaviors are getting worse in 10 to 30 joules energy range. Different types of failure mechanisms involving, plugging, dishing, stretching and bending were determined. For high strength and thick plates plugging type deformation was leaded. In contrast, for thinner and weaker targets bending, stretching and dishing type failures were dominating. For laminated targets also dishing type failure was determined.
2

Návrh speciálních asfaltových směsí SAL určených pro opravu cementobetonových krytů / Design of special asphalt mixtures SAL for the repair of cement concrete pavements

Kalfeřt, Martin January 2014 (has links)
In this thesis layer with increased resistance to crack propagation (SAL) are designed. The theoretical part describes the SAL layer, further the input materials, their production and design of various mixtures. The following is a description of the tests, which include tests of permanent deformation, crack propagation, low-temperature characteristics, test, flexural strength and relaxation. After the test results and conclusion are stated.

Page generated in 0.0497 seconds