• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Merkmalsextraktion für die Klassifikation von Bestandteilen in Dokument-Bildern

Poller, Andreas 20 November 2005 (has links) (PDF)
Am Institut für Print- und Medientechnik an der TU Chemnitz wird ein System entwickelt, welches gescannte Dokumente archivieren soll. Im Gegensatz zu bereits existierenden OCR-Systemen, sollen diese Dokumente hier jedoch nicht mittels einer Schrifterkennung verarbeitet werden. Vielmehr sind Textbereiche in den gescannten Vorlagen zu vektorisieren. Bereiche mit Grafiken und Illustrationen werden bei diesem Verfahren als ein Bildvektor gespeichert. Diese Vorgehensweise soll es ermöglichen, auch Dokumente mit Schriftsymbolen effizient zu archivieren, die keinen "herkömmlichen" Schriftsätzen zugehörig sind. Diese Studienarbeit stellt Merkmalsextraktionsverfahren vor, die aus einem gegebenen Teil (Segment) eines Dokumentenscans Merkmale extrahieren, die es ermöglichen sollen, diesen mittels eines Klassifikationsverfahrens einer Klasse Textblock oder einer Klasse Grafikblock zuzuordnen. Zusätzlich werden zwei Klassifikationsverfahren, ein Entscheidungsbaum und eine Fuzzy-Logik, auf die Nutzbarkeit für einen solchen Mustererkennungsprozess überprüft. Als Textblöcke erkannte Bereiche werden im zu entwickelnden Gesamtverfahren dann in nachfolgenden Verarbeitungsschritten einer Vektorisierung zugeführt.
2

Merkmalsextraktion für die Klassifikation von Bestandteilen in Dokument-Bildern

Poller, Andreas 20 November 2005 (has links)
Am Institut für Print- und Medientechnik an der TU Chemnitz wird ein System entwickelt, welches gescannte Dokumente archivieren soll. Im Gegensatz zu bereits existierenden OCR-Systemen, sollen diese Dokumente hier jedoch nicht mittels einer Schrifterkennung verarbeitet werden. Vielmehr sind Textbereiche in den gescannten Vorlagen zu vektorisieren. Bereiche mit Grafiken und Illustrationen werden bei diesem Verfahren als ein Bildvektor gespeichert. Diese Vorgehensweise soll es ermöglichen, auch Dokumente mit Schriftsymbolen effizient zu archivieren, die keinen "herkömmlichen" Schriftsätzen zugehörig sind. Diese Studienarbeit stellt Merkmalsextraktionsverfahren vor, die aus einem gegebenen Teil (Segment) eines Dokumentenscans Merkmale extrahieren, die es ermöglichen sollen, diesen mittels eines Klassifikationsverfahrens einer Klasse Textblock oder einer Klasse Grafikblock zuzuordnen. Zusätzlich werden zwei Klassifikationsverfahren, ein Entscheidungsbaum und eine Fuzzy-Logik, auf die Nutzbarkeit für einen solchen Mustererkennungsprozess überprüft. Als Textblöcke erkannte Bereiche werden im zu entwickelnden Gesamtverfahren dann in nachfolgenden Verarbeitungsschritten einer Vektorisierung zugeführt.

Page generated in 0.1056 seconds