Spelling suggestions: "subject:"théorie dess valeur"" "subject:"théorie deus valeur""
11 |
L'évaluation du risque et de la performance des Hedge FundsFromont, Emmanuelle 21 November 2006 (has links) (PDF)
Ce travail de recherche propose de nouveaux outils pour améliorer la prise en compte des caractéristiques spécifiques des hedge funds, dans l'évaluation de leur risque et de leur performance. Tout d'abord, nous mettons en évidence l'intérêt des développements basés sur la théorie des valeurs extrêmes pour analyser et quantifier le risque extrême des hedge funds. Une procédure de backtesting démontre que la valeur en risque, estimée à partir de la distribution de Pareto généralisée s'ajustant aux pertes extrêmes (VaREVT), est plus fiable que les mesures de risque usuelles. Puis, nous suggérons un nouvel indicateur de performance, lequel permet de prendre en compte la non normalité des distributions de rentabilités des hedge funds ainsi que, le niveau de rentabilité minimum acceptable de l'investisseur. Enfin, quatre modèles ont été construits en vue de déterminer les principaux facteurs explicatifs de l'évolution de la rentabilité journalière des stratégies alternatives. Ce dernier point donne l'occasion de mettre en évidence les avantages de la méthode de régression PLS pour identifier les facteurs pertinents. Cette recherche offre, non seulement, des résultats intéressants pour mieux comprendre le monde des hedge funds mais également, de nouvelles perspectives pour l'évaluation du risque et de la performance des autres actifs financiers ayant une distribution de rentabilités leptokurtique et asymétrique.
|
12 |
Étude de l'application de la théorie des valeurs extrêmes pour l'estimation fiable et robuste du pire temps d'exécution probabiliste / Study of the extreme value theory applicability for reliable and robust probabilistic worst-case execution time estimatesGuet, Fabrice 13 December 2017 (has links)
Dans les systèmes informatiques temps réel, les tâches logicielles sont contraintes par le temps. Pour garantir la sûreté du système critique contrôlé par le système temps réel, il est primordial d'estimer de manière sûre le pire temps d'exécution de chaque tâche. Les performances des processeurs actuels du commerce permettent de réduire en moyenne le temps d'exécution des tâches, mais la complexité des composants d'optimisation de la plateforme rendent difficile l'estimation du pire temps d'exécution. Il existe différentes approches d'estimation du pire temps d'exécution, souvent ségréguées et difficilement généralisables ou au prix de modèles coûteux. Les approches probabilistes basées mesures existantes sont vues comme étant rapides et simples à mettre en œuvre, mais souffrent d'un manque de systématisme et de confiance dans les estimations qu'elles fournissent. Les travaux de cette thèse étudient les conditions d'application de la théorie des valeurs extrêmes à une suite de mesures de temps d'exécution pour l'estimation du pire temps d'exécution probabiliste, et ont été implémentées dans l'outil diagxtrm. Les capacités et les limites de l'outil ont été étudiées grâce à diverses suites de mesures issues de systèmes temps réel différents. Enfin, des méthodes sont proposées pour déterminer les conditions de mesure propices à l'application de la théorie des valeurs extrêmes et donner davantage de confiance dans les estimations. / Software tasks are time constrained in real time computing systems. To ensure the safety of the critical systems that embeds the real time system, it is of paramount importance to safely estimate the worst-case execution time of each task. Modern commercial processors optimisation components enable to reduce in average the task execution time at the cost of a hard to determine task worst-case execution time. Many approaches for executing a task worst-case execution time exist but are usually segregated and hardly scalable, or by building very complex models. Measurement-based probabilistic timing analysis approaches are said to be easy and fast, but they suffer from a lack of systematism and confidence in their estimates. This thesis studies the applicability of the extreme value theory to a sequence of execution time measurements for the estimation of the probabilistic worst-case execution time, leading to the development of the diagxtrm tool. Thanks to a large panel of sequences of measurements from different real time systems, capabilities and limits of the tool are enlightened. Finally, a couple of methods are provided for determining measurements conditions that foster the application of the theory and raise more confidence in the estimates.
|
13 |
Contribution de la Théorie des Valeurs Extrêmes à la gestion et à la santé des systèmesDiamoutene, Abdoulaye 26 November 2018 (has links) (PDF)
Le fonctionnement d'un système, de façon générale, peut être affecté par un incident imprévu. Lorsque cet incident a de lourdes conséquences tant sur l'intégrité du système que sur la qualité de ses produits, on dit alors qu'il se situe dans le cadre des événements dits extrêmes. Ainsi, de plus en plus les chercheurs portent un intérêt particulier à la modélisation des événements extrêmes pour diverses études telles que la fiabilité des systèmes et la prédiction des différents risques pouvant entraver le bon fonctionnement d'un système en général. C'est dans cette optique que s'inscrit la présente thèse. Nous utilisons la Théorie des Valeurs Extrêmes (TVE) et les statistiques d'ordre extrême comme outil d'aide à la décision dans la modélisation et la gestion des risques dans l'usinage et l'aviation. Plus précisément, nous modélisons la surface de rugosité de pièces usinées et la fiabilité de l'outil de coupe associé par les statistiques d'ordre extrême. Nous avons aussi fait une modélisation à l'aide de l'approche dite du "Peaks-Over Threshold, POT" permettant de faire des prédictions sur les éventuelles victimes dans l'Aviation Générale Américaine (AGA) à la suite d'accidents extrêmes. Par ailleurs, la modélisation des systèmes soumis à des facteurs d'environnement ou covariables passent le plus souvent par les modèles à risque proportionnel basés sur la fonction de risque. Dans les modèles à risque proportionnel, la fonction de risque de base est généralement de type Weibull, qui est une fonction monotone; l'analyse du fonctionnement de certains systèmes comme l'outil de coupe dans l'industrie a montré qu'un système peut avoir un mauvais fonctionnement sur une phase et s'améliorer sur la phase suivante. De ce fait, des modifications ont été apportées à la distribution de Weibull afin d'avoir des fonctions de risque de base non monotones, plus particulièrement les fonctions de risque croissantes puis décroissantes. En dépit de ces modifications, la prise en compte des conditions d'opérations extrêmes et la surestimation des risques s'avèrent problématiques. Nous avons donc, à partir de la loi standard de Gumbel, proposé une fonction de risque de base croissante puis décroissante permettant de prendre en compte les conditions extrêmes d'opérations, puis établi les preuves mathématiques y afférant. En outre, un exemple d'application dans le domaine de l'industrie a été proposé. Cette thèse est divisée en quatre chapitres auxquels s'ajoutent une introduction et une conclusion générales. Dans le premier chapitre, nous rappelons quelques notions de base sur la théorie des valeurs extrêmes. Le deuxième chapitre s'intéresse aux concepts de base de l'analyse de survie, particulièrement à ceux relatifs à l'analyse de fiabilité, en proposant une fonction de risque croissante-décroissante dans le modèle à risques proportionnels. En ce qui concerne le troisième chapitre, il porte sur l'utilisation des statistiques d'ordre extrême dans l'usinage, notamment dans la détection de pièces défectueuses par lots, la fiabilité de l'outil de coupe et la modélisation des meilleures surfaces de rugosité. Le dernier chapitre porte sur la prédiction d'éventuelles victimes dans l'Aviation Générale Américaine à partir des données historiques en utilisant l'approche "Peaks-Over Threshold"
|
14 |
Estimation de mesures de risque pour des distributions elliptiques conditionnées / Estimation of risk measures for conditioned elliptical distributionsUsseglio-Carleve, Antoine 26 June 2018 (has links)
Cette thèse s'intéresse à l'estimation de certaines mesures de risque d'une variable aléatoire réelle Y en présence d'une covariable X. Pour cela, on va considérer que le vecteur (X,Y) suit une loi elliptique. Dans un premier temps, on va s'intéresser aux quantiles de Y sachant X=x. On va alors tester d'abord un modèle de régression quantile assez répandu dans la littérature, pour lequel on obtient des résultats théoriques que l'on discutera. Face aux limites d'un tel modèle, en particulier pour des niveaux de quantile dits extrêmes, on proposera une nouvelle approche plus adaptée. Des résultats asymptotiques sont donnés, appuyés par une étude numérique puis par un exemple sur des données réelles. Dans un second chapitre, on s'intéressera à une autre mesure de risque appelée expectile. La structure du chapitre est sensiblement la même que celle du précédent, à savoir le test d'un modèle de régression inadapté aux expectiles extrêmes, pour lesquels on propose une approche méthodologique puis statistique. De plus, en mettant en évidence le lien entre les quantiles et expectiles extrêmes, on s'aperçoit que d'autres mesures de risque extrêmes sont étroitement liées aux quantiles extrêmes. On se concentrera sur deux familles appelées Lp-quantiles et mesures d'Haezendonck-Goovaerts, pour lesquelles on propose des estimateurs extrêmes. Une étude numérique est également fournie. Enfin, le dernier chapitre propose quelques pistes pour traiter le cas où la taille de la covariable X est grande. En constatant que nos estimateurs définis précédemment étaient moins performants dans ce cas, on s'inspire alors de quelques méthodes d'estimation en grande dimension pour proposer d'autres estimateurs. Une étude numérique permet d'avoir un aperçu de leurs performances / This PhD thesis focuses on the estimation of some risk measures for a real random variable Y with a covariate vector X. For that purpose, we will consider that the random vector (X,Y) is elliptically distributed. In a first time, we will deal with the quantiles of Y given X=x. We thus firstly investigate a quantile regression model, widespread in the litterature, for which we get theoretical results that we discuss. Indeed, such a model has some limitations, especially when the quantile level is said extreme. Therefore, we propose another more adapted approach. Asymptotic results are given, illustrated by a simulation study and a real data example.In a second chapter, we focus on another risk measure called expectile. The structure of the chapter is essentially the same as that of the previous one. Indeed, we first use a regression model that is not adapted to extreme expectiles, for which a methodological and statistical approach is proposed. Furthermore, highlighting the link between extreme quantiles and expectiles, we realize that other extreme risk measures are closely related to extreme quantiles. We will focus on two families called Lp-quantiles and Haezendonck-Goovaerts risk measures, for which we propose extreme estimators. A simulation study is also provided. Finally, the last chapter is devoted to the case where the size of the covariate vector X is tall. By noticing that our previous estimators perform poorly in this case, we rely on some high dimensional estimation methods to propose other estimators. A simulation study gives a visual overview of their performances
|
15 |
Estimation des limites d'extrapolation par les lois de valeurs extrêmes. Application à des données environnementales / Estimation of extrapolation limits based on extreme-value distributions.Application to environmental data.Albert, Clément 17 December 2018 (has links)
Cette thèse se place dans le cadre de la Statistique des valeurs extrêmes. Elle y apporte trois contributions principales. L'estimation des quantiles extrêmes se fait dans la littérature en deux étapes. La première étape consiste à utiliser une approximation des quantiles basée sur la théorie des valeurs extrêmes. La deuxième étape consiste à estimer les paramètres inconnus de l'approximation en question, et ce en utilisant les valeurs les plus grandes du jeu de données. Cette décomposition mène à deux erreurs de nature différente, la première étant une erreur systémique de modèle, dite d'approximation ou encore d'extrapolation, la seconde consituant une erreur d'estimation aléatoire. La première contribution de cette thèse est l'étude théorique de cette erreur d'extrapolation mal connue.Cette étude est menée pour deux types d'estimateur différents, tous deux cas particuliers de l'approximation dite de la "loi de Pareto généralisée" : l'estimateur Exponential Tail dédié au domaine d'attraction de Gumbel et l'estimateur de Weissman dédié à celui de Fréchet.Nous montrons alors que l'erreur en question peut s'interpréter comme un reste d'ordre un d'un développement de Taylor. Des conditions nécessaires et suffisantes sont alors établies de telle sorte que l'erreur tende vers zéro quand la taille de l'échantillon augmente. De manière originale, ces conditions mènent à une division du domaine d'attraction de Gumbel en trois parties distinctes. En comparaison, l'erreur d'extrapolation associée à l'estimateur de Weissman présente un comportement unifié sur tout le domaine d'attraction de Fréchet. Des équivalents de l'erreur sont fournis et leur comportement est illustré numériquement. La deuxième contribution est la proposition d'un nouvel estimateur des quantiles extrêmes. Le problème est abordé dans le cadre du modèle ``log Weibull-tail'' généralisé, où le logarithme de l'inverse du taux de hasard cumulé est supposé à variation régulière étendue. Après une discussion sur les conséquences de cette hypothèse, nous proposons un nouvel estimateur des quantiles extrêmes basé sur ce modèle. La normalité asymptotique dudit estimateur est alors établie et son comportement en pratique est évalué sur données réelles et simulées.La troisième contribution de cette thèse est la proposition d'outils permettant en pratique de quantifier les limites d'extrapolation d'un jeu de données. Dans cette optique, nous commençons par proposer des estimateurs des erreurs d'extrapolation associées aux approximations Exponential Tail et Weissman. Après avoir évalué les performances de ces estimateurs sur données simulées, nous estimons les limites d'extrapolation associées à deux jeux de données réelles constitués de mesures journalières de variables environnementales. Dépendant de l'aléa climatique considéré, nous montrons que ces limites sont plus ou moins contraignantes. / This thesis takes place in the extreme value statistics framework. It provides three main contributions to this area. The extreme quantile estimation is a two step approach. First, it consists in proposing an extreme value based quantile approximation. Then, estimators of the unknown quantities are plugged in the previous approximation leading to an extreme quantile estimator.The first contribution of this thesis is the study of this previous approximation error. These investigations are carried out using two different kind of estimators, both based on the well-known Generalized Pareto approximation: the Exponential Tail estimator dedicated to the Gumbel maximum domain of attraction and the Weissman estimator dedicated to the Fréchet one.It is shown that the extrapolation error can be interpreted as the remainder of a first order Taylor expansion. Necessary and sufficient conditions are then provided such that this error tends to zero as the sample size increases. Interestingly, in case of the so-called Exponential Tail estimator, these conditions lead to a subdivision of Gumbel maximum domain of attraction into three subsets. In constrast, the extrapolation error associated with Weissmanestimator has a common behavior over the whole Fréchet maximum domain of attraction. First order equivalents of the extrapolation error are thenderived and their accuracy is illustrated numerically.The second contribution is the proposition of a new extreme quantile estimator.The problem is addressed in the framework of the so-called ``log-Generalized Weibull tail limit'', where the logarithm of the inverse cumulative hazard rate function is supposed to be of extended regular variation. Based on this model, a new estimator of extreme quantiles is proposed. Its asymptotic normality is established and its behavior in practice is illustrated on both real and simulated data.The third contribution of this thesis is the proposition of new mathematical tools allowing the quantification of extrapolation limits associated with a real dataset. To this end, we propose estimators of extrapolation errors associated with the Exponentail Tail and the Weissman approximations. We then study on simulated data how these two estimators perform. We finally use these estimators on real datasets to show that, depending on the climatic phenomena,the extrapolation limits can be more or less stringent.
|
16 |
Modélisation des évènements rares et estimation des quantiles extrêmes, méthodes de sélection de modèles pour les queues de distributionGarrido, Myriam 12 June 2002 (has links) (PDF)
Cette thèse étudie la modélisation d'événements rares et l'estimation de quantiles extrêmes, à travers différents types de modèles et le choix de ces modèles. La théorie des valeurs extrêmes, et en particulier la méthode des excès (POT, Peaks Over Threshold), permettent une estimation non paramétrique, mais biaisée, des queues de distribution. Nous souhaitons donc utiliser des modèles paramétriques classiques. Cependant, ces modèles étant estimés et sélectionnés par des tests usuels à partir de l'échantillon complet, les résultats sont surtout influencés par les valeurs les plus probables de la variable. Nous proposons deux tests d'adéquation pour la queue de distribution, le test ET (Exponential Tail) et le test GPD (Generalised Pareto Distribution), pour sélectionner, par comparaison avec la méthode POT, les modèles produisant de bonnes estimations de la queue de distribution. Lorsqu'on souhaite reconstituer la loi dont sont issues les observations aussi bien dans la région centrale que dans la région extrême, on applique d'abord à un ensemble de modèles un test usuel (d'adéquation aux valeurs les plus probables), puis un test d'adéquation de la queue de distribution. Si aucune loi n'est acceptée par les deux types de tests, nous proposons une procédure de régularisation bayésienne qui, à partir d'un modèle adapté aux valeurs les plus probables, permet d'améliorer l'adéquation extrême grâce à un avis d'expert sur la queue de distribution. Enfin, si on revient à la méthode POT, il faut en réduire le biais d'estimation, notamment pour l'estimation des quantiles extrêmes. Cette méthode étant fondée sur l'approximation de la loi des excès au-delà d'un seuil par une loi GPD, nous cherchons à mieux en estimer les paramètres. L'inférence bayésienne sur les paramètres de la loi GPD permet de réduire le biais d'estimation des quantiles extrêmes par la méthode POT, en particulier quand on introduit un avis d'expert sur la queue de distribution.
|
17 |
Développement de méthodes statistiques et probabilistes en corrosion par piqûres pour l'estimation de la profondeur maximale : application à l'aluminium A5Jarrah, Adil 08 December 2009 (has links) (PDF)
La corrosion par piqûres est l'une des formes de corrosion les plus répandues. Elle touche tous les matériaux et se place dans un contexte économique très important. Elle peut se manifester à des endroits spécifiques de la structure et mener à sa détérioration en particulier en présence de sollicitations mécaniques. L'aspect stochastique du phénomène a conduit au développement de méthodes statistiques pour le caractériser. Cette caractérisation est souvent faite via l'estimation de la profondeur maximale des piqûres afin d'évaluer le risque de perforation de la structure. Pour cela, la méthode de Gumbel est l'approche la plus utilisée. L'objectif de ce travail est de revenir sur la vérification des conditions d'application de cette méthode notamment l'indépendance et de la comparer avec les autres approches basées sur la loi des valeurs extrêmes généralisée et la loi de dépassement de seuil. La condition d'indépendance est vérifiée à l'aide des processus spatiaux. Une adaptation de l'analyse spectrale en corrosion par piqûres est aussi proposée. La comparaison entre les approches est basée sur des simulations numériques dont les paramètres sont issus de l'expérimentation.
|
18 |
Cartes incertaines et planification optimale pour la localisation d'un engin autonomeCeleste, Francis 10 February 2010 (has links) (PDF)
Des avancées importantes ont été réalisées dans le domaine de la robotique mobile. L'usage croissant des robots terrestres et des drones de petite taille, n'est possible que par l'apport de capacités d'autonomie de mouvement dans l'environnement d'évolution. La problématique de la localisation du système, par la mise en correspondance de mesures issues des capteurs embarqués avec des primitives contenues dans une carte, est primordiale. Ce processus, qui s'appuie sur la mise en oeuvre de techniques de fusion, a été très étudié. Dans cette thèse, nous proposons de définir des méthodes de planification du mouvement d'un mobile, avec pour objectif de garantir une performance de localisation à partir d'une carte incertaine donnée a priori, et ce lors de l'exécution. Une méthode de génération contrôlée de réalisations de cartes bruitées, exploitant la théorie des processus ponctuels, est d'abord présentée. Cette base de cartes permet de construire des cartes multi-niveaux pour la localisation. Le critère d'optimisation est défini à partir de fonctionnelles de la borne de Cramèr-Rao a posteriori, qui tient compte de l'incertitude sur la dynamique du mobile et de la cartographie incertaine. Nous proposons différentes approches, basées sur la méthode de cross-entropie, pour obtenir des stratégies de déplacement avec des modèles de dynamique discret et continu. La qualité des solutions optimales fournies par ces approches heuristiques est analysée en utilisant des résultats de la théorie des valeurs extrêmes. Enfin, nous esquissons une démarche pour l'amélioration ciblée de cartes sous contrainte de ressources afin d'améliorer la performance de localisation.
|
19 |
Contributions à la statistique des processus : estimation, prédiction et extrêmesWintenberger, Olivier 23 November 2012 (has links) (PDF)
Ce mémoire d'habilitation traite de la statistique des processus à temps discret faiblement dépendants. Une première partie présente des résultats asymptotiques d'estimation pour les paramètres de modèles affines généraux. La méthode étudiée est la maximisation du critère de quasi-vraisemblance. Afin de traiter de possibles ruptures de stationnarité, nous pénalisons ce critère par le nombre de ruptures. Pour les modèles à volatilité comme le modèle EGARCH, cette procédure est instable et nous proposons de contraindre le critère au domaine dit d'inversibilité continue. Nous étudions le problème de la prédiction de processus faiblement dépendants dans une seconde partie. Les résultats obtenus sont des inégalités d'oracle non asymptotiques nécessitant l'étude préalable des propriétés de concentration gaussiennes de lois faiblement dépendantes. Pour ce faire nous utilisons une notion de transport faible et de nouvelles inégalités dites de transport conditionnel. Enfin, le comportement des extrêmes en présence de dépendance fait l'objet de la troisième partie. Nous introduisons un indice de {\it cluster} qui caractérise les lois limites $\alpha$-stables dans le théorème de la limite centrale et les grandes déviations des sommes partielles à variation régulière. Nous traitons des exemples de processus à queues épaisses tels que les solutions des équations récurrentes stochastiques linéaires et le modèle GARCH. Nous appliquons ces résultats pour caractériser asymptotiquement les erreurs d'estimation des auto-covariances de processus à queues épaisses.
|
20 |
Modélisation de la dépendance et mesures de risque multidimensionnellesDi Bernardino, Éléna 08 December 2011 (has links) (PDF)
Cette thèse a pour but le développement de certains aspects de la modélisation de la dépendance dans la gestion des risques en dimension plus grande que un. Le premier chapitre est constitué d'une introduction générale. Le deuxième chapitre est constitué d'un article s'intitulant " Estimating Bivariate Tail : a copula based approach ", soumis pour publication. Il concerne la construction d'un estimateur de la queue d'une distribution bivariée. La construction de cet estimateur se fonde sur une méthode de dépassement de seuil (Peaks Over Threshold method) et donc sur une version bivariée du Théorème de Pickands-Balkema-de Haan. La modélisation de la dépendance est obtenue via la Upper Tail Dependence Copula. Nous démontrons des propriétés de convergence pour l'estimateur ainsi construit. Le troisième chapitre repose sur un article: " A multivariate extension of Value-at-Risk and Conditional-Tail-Expectation", soumis pour publication. Nous abordons le problème de l'extension de mesures de risque classiques, comme la Value-at-Risk et la Conditional-Tail-Expectation, dans un cadre multidimensionnel en utilisant la fonction de Kendall multivariée. Enfin, dans le quatrième chapitre de la thèse, nous proposons un estimateur des courbes de niveau d'une fonction de répartition bivariée avec une méthode plug-in. Nous démontrons des propriétés de convergence pour les estimateurs ainsi construits. Ce chapitre de la thèse est lui aussi constitué d'un article, s'intitulant " Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory", accepté pour publication dans la revue ESAIM:Probability and Statistics.
|
Page generated in 0.0802 seconds