Spelling suggestions: "subject:"thermodynamic model""
1 |
Scope and limitations of the irreversible thermodynamics and the solution diffusion models for the separation of binary and multi-component systems in reverse osmosis processAl-Obaidi, Mudhar A.A.R., Kara-Zaitri, Chakib, Mujtaba, Iqbal 05 February 2017 (has links)
Yes / Reverse osmosis process is used in many industrial applications ranging from solute-solvent to solvent-solvent and gaseous separation. A number of theoretical models have been developed to describe the separation and fluxes of solvent and solute in such processes. This paper looks into the scope and limitations of two main models (the irreversible thermodynamics and the solution diffusion models) used in the past by several researchers for solute-solvent feed separation. Despite the investigation of other complex models, the simple concepts of these models accelerate the feasibility of the implementation of reverse osmosis for different types of systems and variety of industries. Briefly, an extensive review of these mathematical models is conducted by collecting more than 70 examples from literature in this study. In addition, this review has covered the improvement of such models to make them compatible with multi-component systems with consideration of concentration polarization and solvent-solute-membrane interaction.
|
2 |
Sur le comportement magnéto-mécanique des alliages à mémoire de forme magnétiquesChen, Xue, Moumni, Ziad, He, Yong Jun 25 June 2013 (has links) (PDF)
Les Alliages à Mémoire de Forme Magnétiques (AMFM) sont des matériaux actifs qui présentent des comportements inhabituels par rapport aux matériaux " classiques ". Ils peuvent par exemple présenter de larges déformations réversibles sous l'action d'un champ magnétique ou sous une action mécanique. Ce sont des candidats potentiels pour des applications dans des domaines de pointe (automobile, aéronautique, spatial, etc.). Les AMFM présentent par ailleurs un avantage indéniable par rapport aux matériaux à mémoire de forme " thermique " en raison de leur réponse dynamique à haute fréquence. Il est bien connu que ces comportements sont dus à un couplage magnéto-mécanique et à un phénomène physique lié à l'orientation des variantes de martensite. L'objectif de cette thèse est d'analyser les comportements magnéto-mécaniques des AMFM. Pour ce faire, nous étudions expérimentalement et théoriquement, la réorientation martensitique dans les AMFM. Tout d'abord, une analyse énergétique en 2D/3D est proposée et intégrée dans des diagrammes d'état pour une étude systématique de la réorientation martensitique dans les AMFM sous chargements tridimensionnels quelconques. Ainsi, des critères de large déformation réversible sous des chargements cycliques sont obtenus. L'analyse énergétique montre que les AMFM, sollicités sous chargement multiaxiaux présentent plus d'avantages que ceux sollicités en 1D ; en particulier, on montre que l'état multiaxial permet d'augmenter (d'améliorer) la contrainte fonctionnelle, ce qui augmente le champ d'application des ces matériaux. Ensuite, afin de valider les prédictions de l'analyse énergétique, des expériences bi-axiales ont été effectuées sur des éprouvettes en AMFM. Les résultats révèlent que la dissipation intrinsèque et la déformation de transformation dues à la réorientation martensitique sont constantes dans tous les états de contraintes. De plus, les résultats ont permis de valider nos prédictions théoriques quant à l'augmentation de la contrainte fonctionnelle. Enfin, afin de prédire les comportements magnéto-mécaniques des AMFM sous des chargements multiaxiaux, un modèle tridimensionnel est développé dans le cadre de la thermodynamique des processus irréversibles avec liaison interne. Toutes les variantes de martensite ont été considérées et l'effet de température a également été pris en compte. Les simulations numériques montrent un très bon accord (rejoignent/confirment les résultats) avec les résultats expérimentaux existant dans la littérature. Le modèle a ensuite été programmé dans un code de calcul par éléments finis afin d'étudier les comportements non linéaires de flexion des poutres en AMFM. L'effet géométrique et l'effet d'anisotropie du matériau ont été systématiquement pris en compte.
|
Page generated in 0.08 seconds