Spelling suggestions: "subject:"thermodynamic"" "subject:"thermodynamics""
121 |
Local Thermal Equilibrium on Curved Spacetimes and Linear Cosmological Perturbation TheoryEltzner, Benjamin 29 May 2013 (has links)
In this work the extension of the criterion for local thermal equilibrium by Buchholz, Ojima and Roos to curved spacetime as introduced by Schlemmer is investigated. Several problems are identified and especially the instability under time evolution which was already observed by Schlemmer is inspected. An alternative approach to local thermal equilibrium in quantum field theories on curved spacetimes is presented and discussed. In the following the dynamic system of the linear field and matter perturbations in the generic model of inflation is studied in the view of ambiguity of quantisation. In the last part the compatibility of the temperature fluctuations of the cosmic microwave background radiation with local thermal equilibrium is investigated.:1. Introduction 5
2. Technical Background 10
2.1. The Free Scalar Field on a Globally Hyperbolic Spacetime . . . . . . 10
2.1.1. Construction of the Scalar Field . . . . . . . . . . . . . . . . . 10
2.1.2. Algebra of Wick Products . . . . . . . . . . . . . . . . . . . . 13
2.1.3. Local Covariance Principle . . . . . . . . . . . . . . . . . . . . 17
2.2. Local Thermal Equilibirum . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1. Global Thermodynamic Equilibrium - KMS States . . . . . . 21
2.2.2. Local Thermal Observables . . . . . . . . . . . . . . . . . . . 24
2.2.3. LTE on Flat Spacetime . . . . . . . . . . . . . . . . . . . . . . 29
2.2.4. LTE in Cosmological Spacetimes . . . . . . . . . . . . . . . . 32
2.3. Linear Scalar Cosmological Perturbations . . . . . . . . . . . . . . . . 34
2.3.1. Robertson-Walker Cosmology . . . . . . . . . . . . . . . . . . 35
2.3.2. Mathematical Background . . . . . . . . . . . . . . . . . . . . 38
2.3.3. Technical Framework and Formulae . . . . . . . . . . . . . . . 40
2.3.4. The Boltzmann Equation . . . . . . . . . . . . . . . . . . . . 46
2.3.5. The Sachs-Wolfe Effect for Adiabatic Perturbations . . . . . . 49
3. Towards a Refinement of the LTE Condition on Curved Spacetimes 54
3.1. Non-Minimal Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.1.1. Commutator Distribution . . . . . . . . . . . . . . . . . . . . 55
3.1.2. KMS Two-Point Function . . . . . . . . . . . . . . . . . . . . 57
3.1.3. Balanced Derivatives . . . . . . . . . . . . . . . . . . . . . . . 61
3.2. Conformally Static Spacetimes . . . . . . . . . . . . . . . . . . . . . . 65
3.2.1. Conformal KMS States . . . . . . . . . . . . . . . . . . . . . . 66
3.2.2. Extrinsic LTE in de Sitter Spacetime . . . . . . . . . . . . . . 71
3.3. Massive Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.1. Properties of the Model . . . . . . . . . . . . . . . . . . . . . 78
3.3.2. Bogoliubov Transformation . . . . . . . . . . . . . . . . . . . 80
3.3.3. Thermal Observables . . . . . . . . . . . . . . . . . . . . . . . 82
3.4. Towards an Alternative Concept . . . . . . . . . . . . . . . . . . . . . 91
3.4.1. Problems and Open Questions Concerning LTE . . . . . . . . 92
3.4.2. Dynamic Equations . . . . . . . . . . . . . . . . . . . . . . . . 94
3.4.3. Positivity Inequalities . . . . . . . . . . . . . . . . . . . . . . . 96
3.4.4. Macroobservable Interpretation . . . . . . . . . . . . . . . . . 100
3.5. An Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4. Cosmological Perturbation Theory 105
4.1. Dynamics of Perturbations in Inflation . . . . . . . . . . . . . . . . . 106
4.1.1. CCR Quantisation is Ambiguous . . . . . . . . . . . . . . . . 106
4.1.2. Canonical Symplectic Form . . . . . . . . . . . . . . . . . . . 111
4.1.3. The Algebraic Point of View . . . . . . . . . . . . . . . . . . . 117
4.2. LTE States in Cosmology . . . . . . . . . . . . . . . . . . . . . . . . 120
4.2.1. The Link to Fluid Dynamics . . . . . . . . . . . . . . . . . . . 120
4.2.2. Incompatibility of LTE with Sachs-Wolfe Effect . . . . . . . . 125
5. Conclusion and Outlook 131
A. Technical proofs 136
A.1. Proof of Lemma 3.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.2. Proof of Lemma 3.2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.3. Proof of Lemma 3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.4. Idea of Proof for Conjecture 3.4.3 . . . . . . . . . . . . . . . . . . . . 144
B. Introduction to Probability Theory 146
Bibliography 150
Correction of Lemma 3.1.2 155 / In dieser Arbeit wird die von Schlemmer eingeführte Erweiterung des Kriteriums für lokales thermisches Gleichgewicht in Quantenfeldtheorien von Buchholz, Ojima und Roos auf gekrümmte Raumzeiten untersucht. Dabei werden verschiedene Probleme identifiziert und insbesondere die bereits von Schlemmer gezeigte Instabilität unter Zeitentwicklung untersucht. Es wird eine alternative Herangehensweise an lokales thermisches Gleichgewicht in Quantenfeldtheorien auf gekrümmten Raumzeiten vorgestellt und deren Probleme diskutiert. Es wird dann eine Untersuchung des dynamischen Systems der linearen Feld- und Metrikstörungen im üblichen Inflationsmodell mit Blick auf Uneindeutigkeit der Quantisierung durchgeführt. Zuletzt werden die Temperaturfluktuationen der kosmischen Hintergrundstrahlung auf Kompatibilität mit lokalem thermalem Gleichgewicht überprüft.:1. Introduction 5
2. Technical Background 10
2.1. The Free Scalar Field on a Globally Hyperbolic Spacetime . . . . . . 10
2.1.1. Construction of the Scalar Field . . . . . . . . . . . . . . . . . 10
2.1.2. Algebra of Wick Products . . . . . . . . . . . . . . . . . . . . 13
2.1.3. Local Covariance Principle . . . . . . . . . . . . . . . . . . . . 17
2.2. Local Thermal Equilibirum . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1. Global Thermodynamic Equilibrium - KMS States . . . . . . 21
2.2.2. Local Thermal Observables . . . . . . . . . . . . . . . . . . . 24
2.2.3. LTE on Flat Spacetime . . . . . . . . . . . . . . . . . . . . . . 29
2.2.4. LTE in Cosmological Spacetimes . . . . . . . . . . . . . . . . 32
2.3. Linear Scalar Cosmological Perturbations . . . . . . . . . . . . . . . . 34
2.3.1. Robertson-Walker Cosmology . . . . . . . . . . . . . . . . . . 35
2.3.2. Mathematical Background . . . . . . . . . . . . . . . . . . . . 38
2.3.3. Technical Framework and Formulae . . . . . . . . . . . . . . . 40
2.3.4. The Boltzmann Equation . . . . . . . . . . . . . . . . . . . . 46
2.3.5. The Sachs-Wolfe Effect for Adiabatic Perturbations . . . . . . 49
3. Towards a Refinement of the LTE Condition on Curved Spacetimes 54
3.1. Non-Minimal Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.1.1. Commutator Distribution . . . . . . . . . . . . . . . . . . . . 55
3.1.2. KMS Two-Point Function . . . . . . . . . . . . . . . . . . . . 57
3.1.3. Balanced Derivatives . . . . . . . . . . . . . . . . . . . . . . . 61
3.2. Conformally Static Spacetimes . . . . . . . . . . . . . . . . . . . . . . 65
3.2.1. Conformal KMS States . . . . . . . . . . . . . . . . . . . . . . 66
3.2.2. Extrinsic LTE in de Sitter Spacetime . . . . . . . . . . . . . . 71
3.3. Massive Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.1. Properties of the Model . . . . . . . . . . . . . . . . . . . . . 78
3.3.2. Bogoliubov Transformation . . . . . . . . . . . . . . . . . . . 80
3.3.3. Thermal Observables . . . . . . . . . . . . . . . . . . . . . . . 82
3.4. Towards an Alternative Concept . . . . . . . . . . . . . . . . . . . . . 91
3.4.1. Problems and Open Questions Concerning LTE . . . . . . . . 92
3.4.2. Dynamic Equations . . . . . . . . . . . . . . . . . . . . . . . . 94
3.4.3. Positivity Inequalities . . . . . . . . . . . . . . . . . . . . . . . 96
3.4.4. Macroobservable Interpretation . . . . . . . . . . . . . . . . . 100
3.5. An Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4. Cosmological Perturbation Theory 105
4.1. Dynamics of Perturbations in Inflation . . . . . . . . . . . . . . . . . 106
4.1.1. CCR Quantisation is Ambiguous . . . . . . . . . . . . . . . . 106
4.1.2. Canonical Symplectic Form . . . . . . . . . . . . . . . . . . . 111
4.1.3. The Algebraic Point of View . . . . . . . . . . . . . . . . . . . 117
4.2. LTE States in Cosmology . . . . . . . . . . . . . . . . . . . . . . . . 120
4.2.1. The Link to Fluid Dynamics . . . . . . . . . . . . . . . . . . . 120
4.2.2. Incompatibility of LTE with Sachs-Wolfe Effect . . . . . . . . 125
5. Conclusion and Outlook 131
A. Technical proofs 136
A.1. Proof of Lemma 3.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.2. Proof of Lemma 3.2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.3. Proof of Lemma 3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.4. Idea of Proof for Conjecture 3.4.3 . . . . . . . . . . . . . . . . . . . . 144
B. Introduction to Probability Theory 146
Bibliography 150
Correction of Lemma 3.1.2 155
|
122 |
An Extension to Endoreversible Thermodynamics for Multi-Extensity Fluxes and Chemical Reaction ProcessesWagner, Katharina 20 June 2014 (has links)
In this thesis extensions to the formalism of endoreversible thermodynamics for multi-extensity fluxes and chemical reactions are introduced. These extensions make it possible to model a great variety of systems which could not be investigated with standard endoreversible thermodynamics. Multi-extensity fluxes are important when studying processes with matter fluxes or processes in which volume and entropy are exchanged between subsystems. For including reversible as well as irreversible chemical reaction processes a new type of subsystems is introduced - the so called reactor. It is similar to endoreversible engines, because the fluxes connected to it are balanced. The difference appears in the balance equations for particle numbers, which contain production or destruction terms, and in the possible entropy production in the reactor.
Both extensions are then applied to an endoreversible fuel cell model. The chemical reactions in the anode and cathode of the fuel cell are included with the newly introduced subsystem -- the reactor. For the transport of the reactants and products as well as the proton transport through the electrolyte membrane, the multi-extensity fluxes are used. This fuel cell model is then used to calculate power output, efficiency and cell voltage of a fuel cell with irreversibilities in the proton and electron transport. It directly connects the pressure and temperature dependencies of the cell voltage with the dissipation due to membrane resistance. Additionally, beside the listed performance measures it is possible to quantify and localize the entropy production and dissipated heat with only this one model. / In dieser Arbeit erweitere ich den Formalismus der endoreversiblen Thermodynamik, um Flüsse mit mehr als einer extensiven Größe sowie chemische Reaktionsprozesse modellieren zu können. Mit Hilfe dieser Erweiterungen eröffnen sich zahlreiche neue Anwendungsmöglichkeiten für endoreversible Modelle. Flüsse mit mehreren extensiven Größen sind für die Betrachtung von Masseströmen ebenso nötig wie für Prozesse, bei denen sowohl Volumen als auch Entropie zwischen zwei Teilsystem ausgetauscht werden. Für sowohl reversibel wie auch irreversibel geführte chemische Reaktionsprozesse wird ein neues Teilsystem - der "Reaktor" - vorgestellt, welches sich ähnlich wie endoreversible Maschinen durch Bilanzgleichungen auszeichnet. Der Unterschied zu den Maschinen besteht in den Produktions- bzw. Vernichtungstermen in den Teilchenzahlbilanzen sowie der möglichen Entropieproduktion innerhalb des Reaktors.
Beide Erweiterungen finden dann in einem endoreversiblen Modell einer Brennstoffzelle Anwendung. Dabei werden Flüsse mehrerer gekoppelter Extensitäten für den Zustrom von Wasserstoff und Sauerstoff sowie für den Protonentransport durch die Elektrolytmembran benötigt. Chemische Reaktionen treten in der Anode und Kathode der Brennstoffzelle auf. Diese werden mit dem neu eingeführten Teilsystem, dem Reaktor, eingebunden. Mit Hilfe des Modells werden dann Wirkungsgrad, Zellspannung und Leistung einer Brennstoffzelle unter Berücksichtigung der Partialdrücke der Substanzen, der Temperatur sowie der Dissipation beim Protonentransport berechnet. Dabei zeigt sich, dass experimentelle Daten für die Zellspannung sowohl qualitativ als auch näherungsweise quantitativ durch das Modell abgebildet werden können. Der Vorteil des endoreversiblen Modells liegt dabei in der Möglichkeit, mit nur einem Modell neben den genannten Kenngrößen auch die abgegebene Wärme sowie die Entropieproduktion zu quantifizieren und den einzelnen Teilprozessen zuzuordnen.
|
123 |
Thermodynamic database for Pb and its compounds - data selectionMoog, Helge 25 August 2022 (has links)
This report documents the selection of thermodynamic data for lead and lead compounds. Except for elemental lead, it is restricted to lead in the oxidation state +II (plumbous lead). Besides formation constants and, in part, enthalpies of formation and standard entropies, interaction coefficients for the correction of activity coefficients following the Pitzer formalism are provided. Aqueous complexes of lead with chloride, sulphate, and hydroxide are explicitly accounted for in the Pitzer model. Wherever possible, the validity of selected data is tested by recalculating experimental data. The presented data set is valid for 298.15K only.
|
124 |
Hysteresis der Feuchtespeicherung in porösen Materialien / Hysteresis of Moisture Storage in Porous MaterialsFunk, Max 24 July 2012 (has links) (PDF)
In dieser Arbeit wird eine einheitliche physikalische Beschreibung des Feuchtespeicherverhaltens poröser Materialien gegeben, und ein anwendungsorientiertes Modell daraus abgeleitet. Insbesondere wird die Hysteresis der Feuchtespeicherung berücksichtigt.
Die thermodynamischen Grundlagen der Feuchtespeicherung werden vollständig abgeleitet. Die Energie des kondensierten Wassers wird durch die Energie der freien Flüssigphase zuzüglich einer Porenwechselwirkungsenergie dargestellt. Um das Kondensationsverhalten zu beschreiben, wird ein thermodynamisches Kondensationspotential eingeführt; dabei werden ein Ungleichgewicht zwischen Kondensatphase und Wasserdampf sowie mehrere unabhängige Wassergehalte im Porensystem zur Darstellung der Hysteresis berücksichtigt. Für verschiedene in der Literatur beschriebene Sorptionsprozesse wird mit einheitlichen Zustandsgrössen das Kondensationspotential berechnet. Die Hysteresis wird als verzögerte Bewegung des Systemzustandes in der Berg- und Tallandschaft des Kondensationspotentials interpretiert.
Es wurden an 11 Materialien Sorptionsmessungen im hygroskopischen Luftfeuchtebereich (0-92% RH) durchgeführt: Eine Adsorptionskurve und mehrere Desorptionskurven, sowie eine Langzeitmessung der Feuchteaufnahme bei 92% RH. Aus dem Adsorptions-Desorptionsverhältnis entnimmt man, dass der Hysteresis-Effekt typischerweise etwa 20% ausmacht.
Mit den Messungen werden für alle Materialien das Modell der unabhängigen Domänen, das hysteretische thermodynamische Kondensationspotential und das Sorptionskurvensystem parametrisiert. Die Feuchteaufnahme bei dem Langzeitexperiment lässt sich durch eine bimodale Exponentialfunktion beschreiben.
Die Kurven von hygroskopischer Adsorption und Desorption werden durch analytische Funktionen angenähert. Die Steigungen der Zwischenkurven werden aus den Steigungen der Hauptkurven berechnet. In gleicher Weise wird auch der überhygroskopische Bereich dargestellt, unter Zuhilfenahme externer Messdaten. Schliesslich ergeben sich zwei getrennt parametrisierte, aneinander angrenzende Sorptionsschleifen für den hygroskopischen und den überhygroskopischen Bereich. Alle Parameter werden so angepasst, dass eine grösstmögliche Übereinstimmung mit dem Domänenmodell erzielt wird. / This work gives a unified physical description of moisture storage in very different porous materials and derives an application-oriented model, especially the hysteresis of moisture storage has been investigated extensively.
A full derivation of the thermodynamics of moisture sorption is given. The energy of condensed water is described by the energy of the free liquid plus a pore interaction energy. To describe the condensation behaviour, a thermodynamic condensation potential is introduced. It takes into account a non-equilibrium between condensed water and water vapour as well as several independent moisture contents in the liquid phase to describe the hysteresis. For many different sorption processes described in literature the condensation potential is derived, using always the same state variables. Hysteresis is interpreted as a delayed movement of the system in the hill-and-valley-landscape of the condensation potential.
Sorption measurements have been performed for 11 different materials in the hygroscopic region (0-92% RH). One adsorption curve and several desorption curves and also the time dependent moisture sorption at 92% RH in a long-time experiment have been measured. From the adsorption-desorption ratio it can be concluded that the influence of hygroscopic hysteresis is typically about 20%.
From the measurement results, for all materials the model of independent domains, the hysteretic condensation potential and the sorption curve system are parameterised. The moisture uptake of the long-time experiment can be described by a bimodal exponential function.
The curves of hygroscopic adsorption and desorption are approximated by analytical functions. The slopes of the intermediate curves are calculated from the slopes of the main curves. In the same way the overhygroscopic region is approximated, using external measurement results. Finally a model is presented with two neighbouring sorption loops, one for the hygroscopic, one for the overhygroscopic region. All parameters are fitted to the predictions of the domain model.
|
125 |
First-principles simulations of the oxidation of methane and CO on platinum oxide surfaces and thin filmsSeriani, Nicola 10 November 2006 (has links) (PDF)
The catalytic oxidation activity of platinum particles in automobile catalysts is thought to originate from the presence of highly reactive superficial oxide phases which form under oxygen-rich reaction conditions. The thermodynamic stability of platinum oxide surfaces and thin films was studied, as well as their reactivities towards oxidation of carbon compounds by means of first-principles atomistic thermodynamics calculations and molecular dynamics simulations based on density functional theory. On the Pt(111) surface the most stable superficial oxide phase is found to be a thin layer of alpha-PtO2, which appears not to be reactive towards either methane dissociation or carbon monoxide oxidation. A PtO-like structure is most stable on the Pt(100) surface at oxygen coverages of one monolayer, while the formation of a coherent and stress-free Pt3O4 film is favoured at higher coverages. Bulk Pt3O4 is found to be thermodynamically stable in a region around 900 K at atmospheric pressure. The computed net driving force for the dissociation of methane on the Pt3O4(100) surface is much larger than on all other metallic and oxide surfaces investigated. Moreover, the enthalpy barrier for the adsorption of CO molecules on oxygen atoms of this surface is as low as 0.34 eV, and desorption of CO2 is observed to occur without any appreciable energy barrier in molecular dynamics simulations. These results, combined, indicate a high catalytic oxidation activity of Pt3O4 phases that can be relevant in the contexts of Pt-based automobile catalysts and gas sensors.
|
126 |
Renewed Theory, Interfacing, and Visualization of Thermal Lattice Boltzmann SchemesSpäth, Peter 21 July 2000 (has links)
In this Doktorarbeit the Lattice Boltzmann scheme, a heuristic method for the
simulation of flows in complicated boundaries, is investigated. Its theory is
renewed by emphasizing the entropy maximization principle, and new means
for the modelling of geometries (including moving boundaries) and the visual
representation of evoluting flows are presented. An object oriented implemen-
tation is given with communication between objects realized by an interpreter
object and communication from outside realized via interprocess communica-
tion. Within the new theoretical apprach the applicability of existing Lattice
Boltzmann schemes to model thermal flows for arbitrary temperatures is reex-
amined. / In dieser Doktorarbeit wird das Gitter-Boltzmann-Schema, eine heuristische Methode
fuer die Simulation von Stroemungen innerhalb komplexer Raender, untersucht. Die
zugrundeliegende Theorie wird unter neuen Gesichtspunkten, insbesondere dem Prinzip
der Entropiemaximierung, betrachtet. Des weiteren werden neuartige Methoden fuer
die Modellierung der Geometrie (einschl. beweglicher Raender) und der visuellen
Darstellung aufgezeigt. Eine objektorientierte Implementierung wird vorgestellt,
wobei die Kommunikation zwischen den Objekten über Interpreter-Objekte und die
Kommunikation mit der Aussenwelt ueber Interprozess-Kommunikation gehandhabt wird.
Mit dem neuen theoretischen Ansatz wird die Gueltigkeit bestehender
Gitter-Boltzmann-Schemata fuer die Anwendung auf Stroemungen mit nicht
konstanter Temperatur untersucht.
|
127 |
Performance Optima for Endoreversible Systems / Optima und Grenzen von Leistungsmerkmalen Endoreversibler SystemeBurzler, Josef Maximilian 08 January 2003 (has links) (PDF)
Theoretical bounds for performance measures of thermodynamical systems are
investigated under conditions of finite times and rates of processes using
endoreversible models. These models consist of reversible operating
sub-systems which exchange energy via generally irreversible interactions.
Analytical and numerical calculations are performed to obtain performance optima
and respective optimized process and design parameters for four model systems.
A heat engine where the heat transfer between the working fluid and heat reservoirs
is described by generalized, polytropic process is optimized for
maximum work output. Thermal efficiencies, optimal values for temperatures and
process times of the heat transfer processes are determined.
A model of a generalized system suited to describe the operation of heat
engines, refrigerators, and heat pumps is optimized with respect to thermal
efficiency. Several examples illustrate how the results of the analysis are
used to allocate financial resources to the heat exchanger inventory in
an optimal way.
A power-producing thermal system which exchanges heat with several heat
reservoirs via irreversible heat transfer processes is analyzed to find the
optimal contact times between the working fluid and each of the reservoirs.
The piston motion of a Diesel engine is optimized to achieve maximum work
for a given amount of fuel. The endoreversible model of the Diesel engine
accounts for the temporal variations of the heat produced by the combustion
process, the basic flow pattern within the engine's cylinder, the
temperature dependence of the viscosity, thermal conductivity, and heat
capacity of the working fluid and losses due to friction and heat leak
through the cylinder walls. / Theoretische Grenzen für verschiedene Leistungsmerkmale von
thermodynamischen Systemen werden unter der Bedingung endlicher Zeiten und
Prozessraten im Rahmen endoreversibler Modelle untersucht. Diese Modelle
bestehen aus reversiblen Subsystemen, welche über allgemein irreversible
Wechselwirkungen Energie austauschen.
Analytische und nummerische Berechnungen quantifizieren diese Grenzen und
liefern optimale Prozess- und Konstruktionsparameter für vier Modellsysteme.
Für eine auf maximale Ausgangsarbeit optimierte Wärmekraftmaschine, bei der
die Wärme zwischen Arbeitsmedium und Wärmereservoirs während allgemeiner
polytroper Zustandsänderungen des Arbeitsmediums übertragen wird, werden
optimale Temperaturen und Zeiten für die Wärmeübertragungsprozesse sowie die
thermischen Wirkungsgrade bestimmt.
Für ein wirkungsgrad-optimiertes Modell eines verallgemeinerten thermischen
Umwandlungssytems, das sowohl Wärmekraftmaschinen, Kühler und Wärmepumpen
beschreibt, wird die optimale Verteilung von Investitionskosten auf die
Wärmetauscher ermittelt und die Anwendung der allgemeingültigen
Ergebnisse anhand mehrerer Beispiele demonstriert.
Für eine Wärmekraftmaschine mit mehreren Wärmereservoirs wird bestimmt,
welche der Wärmereservoirs wie lange kontaktiert werden müssen, um eine
maximale Ausgangsarbeit zu erzielen.
Für einen Dieselmotor wird die Kolbenbewegung so optimiert, dass bei
gegebener Treibstoffmenge eine maximale Ausgangsarbeit erzielt wird. Das
endoreversible Modell des Dieselmotors berücksichtigt die
Temperaturabhängigkeit der Wärmekapazität, Wärmeleitfähigkeit und Viskosität
des Arbeitsfluids, die Zeitabhängigkeit des Verbrennungsprozesses sowie
Reibungs- und Wärmeverluste.
|
128 |
Pattern Formation in Spatially Forced Thermal Convection / Musterbildung in Thermischer Konvektion unter räumlich variierenden RandbedingungenWeiß, Stephan 14 October 2009 (has links)
No description available.
|
129 |
Experimentelle Untersuchungen doppelt diffusiver Konvektion im Finger-Regime / Experimental study of double diffusive convection in the finger regimeHage, Ellen-Christin 14 July 2010 (has links)
No description available.
|
130 |
Struktur, Wachstum und Phasenumwandlungen dünner Eisen-Palladium Schichten / Structure, growth and phase transitions of thin Iron-Palladium filmsEdler, Tobias 15 June 2010 (has links)
No description available.
|
Page generated in 0.0769 seconds