• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Accurate Wheel-rail Dynamic Measurement using a Scaled Roller Rig

Kothari, Karan 08 August 2018 (has links)
The primary purpose of this study is to perform accurate dynamic measurements on a scaled roller rig designed and constructed by Virginia Tech and the Federal Railroad Administration (VT-FRA Roller Rig). The study also aims at determining the effect of naturally generated third-body layer deposits (because of the wear of the wheel and/or roller) on creep or traction forces. The wheel-rail contact forces, also referred to as traction forces, are critical for all aspects of rail dynamics. These forces are quite complex and they have been the subject of several decades of research, both in experiments and modeling. The primary intent of the VT-FRA Roller Rig is to provide an experimental environment for more accurate testing and evaluation of some of the models currently in existence, as well as evaluate new hypothesis and theories that cannot be verified on other roller rigs available worldwide. The Rig consists of a wheel and roller in a vertical configuration that allows for closely replicating the boundary conditions of railroad wheel-rail contact via actively controlling all the wheel-rail interface degrees of freedom: angle of attack, cant angle, normal load and lateral displacement, including flanging. The Rig has two sophisticated independent drivelines to precisely control the rotational speed of the wheels, and therefore their relative slip or creepage. The Rig benefits from a novel force measurement system, suitable for steel on steel contact, to precisely measure the contact forces and moments at the wheel-rail contact. Experimental studies are conducted on the VT ��" FRA Roller Rig that involved varying the angle of attack, wheel and rail surface lubricity condition (i.e., wet vs. dry rail), and wheel wear, to study their effect on wheel-rail contact mechanics and dynamics. The wheel-rail contact is in between a one-fourth scale AAR-1B locomotive wheel and a roller machined to US-136 rail profile. A quantitative assessment of the creep-creepage measurements, which is an important metric to evaluate the wheel-rail contact mechanics and dynamics, is presented. A MATLAB routine is developed to generate the creep-creepage curves from measurements conducted as part of a broad experimental study. The shape of the contact patch and its pressure distribution have been discussed. An attempt is made to apply the results to full-scale wheels and flat rails. The research results will help in the development of better simulation models for non-Hertzian contact and non-linear creep theories for wheel-rail contact problems that require further research to more accurately represent the wheel-rail interaction. / MS / Rail vehicles are supported, steered, accelerated, and decelerated by contact forces acting in extremely small wheel-rail contact areas. The behavior of these forces is quite complex and a broad interdisciplinary research is needed to understand and optimize the contact mechanics and dynamics problem. Key industry issues, such as control of Rolling Contact Fatigue (RCF), maximizing wheelset mileages, and minimizing the impact of rolling stock on the infrastructure, are directly related to the interaction at the wheel-rail contact. The Rig consists of a wheel and roller in a vertical configuration that allows for closely replicating the boundary conditions of railroad wheel-rail contact via actively controlling all the wheel-rail interface degrees of freedom: angle of attack, cant angle, normal load and lateral displacement, including flanging. The Rig has two sophisticated independent drivelines to precisely control the rotational speed of the wheels, and therefore their relative slip or creepage. The Rig benefits from a novel force measurement system, suitable for steel on steel contact, to precisely measure the contact forces and moments at the wheel-rail contact. The primary purpose of this study is to perform accurate dynamic measurements on a scaled roller rig designed and constructed by Virginia Tech and the Federal Railroad Administration (VT-FRA Roller Rig). Experimental studies are conducted on the VT – FRA Roller Rig that involved varying the angle of attack, the wheel and rail surface lubricity condition (i.e., wet vs. dry rail), and the wheel wear to study their effects on wheel-rail contact mechanics and dynamics. The wheel-rail contact is in between a one-fourth scale AAR-1B locomotive wheel and a roller machined to US-136 rail profile. A quantitative assessment of the creep-creepage measurements, which is an important metric to evaluate the wheel-rail contact mechanics and dynamics, is presented. A MATLAB routine is developed to generate the creep-creepage curves from measurements conducted as part of a broad experimental study. The shape of the contact patch and its pressure distribution have been discussed. An attempt is made to apply the results to full-scale wheels and flat rails. The research results will help in the development of better simulation models for non-Hertzian contact and non-linear creep theories for wheel-rail contact problems that require further research to more accurately represent the wheel-rail interaction.

Page generated in 0.059 seconds