1 |
Multipose Binding in Molecular DockingAtkovska, Kalina, Samsonov, Sergey A., Paszkowski-Rogacz, Maciej, Pisabarro, M. Teresa 09 July 2014 (has links) (PDF)
Molecular docking has been extensively applied in virtual screening of small molecule libraries for lead identification and optimization. A necessary prerequisite for successful differentiation between active and non-active ligands is the accurate prediction of their binding affinities in the complex by use of docking scoring functions. However, many studies have shown rather poor correlations between docking scores and experimental binding affinities. Our work aimed to improve this correlation by implementing a multipose binding concept in the docking scoring scheme. Multipose binding, i.e., the property of certain protein-ligand complexes to exhibit different ligand binding modes, has been shown to occur in nature for a variety of molecules. We conducted a high-throughput docking study and implemented multipose binding in the scoring procedure by considering multiple docking solutions in binding affinity prediction. In general, improvement of the agreement between docking scores and experimental data was observed, and this was most pronounced in complexes with large and flexible ligands and high binding affinities. Further developments of the selection criteria for docking solutions for each individual complex are still necessary for a general utilization of the multipose binding concept for accurate binding affinity prediction by molecular docking.
|
2 |
Multipose Binding in Molecular DockingAtkovska, Kalina, Samsonov, Sergey A., Paszkowski-Rogacz, Maciej, Pisabarro, M. Teresa 09 July 2014 (has links)
Molecular docking has been extensively applied in virtual screening of small molecule libraries for lead identification and optimization. A necessary prerequisite for successful differentiation between active and non-active ligands is the accurate prediction of their binding affinities in the complex by use of docking scoring functions. However, many studies have shown rather poor correlations between docking scores and experimental binding affinities. Our work aimed to improve this correlation by implementing a multipose binding concept in the docking scoring scheme. Multipose binding, i.e., the property of certain protein-ligand complexes to exhibit different ligand binding modes, has been shown to occur in nature for a variety of molecules. We conducted a high-throughput docking study and implemented multipose binding in the scoring procedure by considering multiple docking solutions in binding affinity prediction. In general, improvement of the agreement between docking scores and experimental data was observed, and this was most pronounced in complexes with large and flexible ligands and high binding affinities. Further developments of the selection criteria for docking solutions for each individual complex are still necessary for a general utilization of the multipose binding concept for accurate binding affinity prediction by molecular docking.
|
3 |
Discovery of novel regulators of aldehyde dehydrogenase isoenzymesIvanova, Yvelina Tsvetanova 30 May 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Recent work has shown that specific ALDH isoenzymes can contribute to the underlying pathology of different diseases. Many ALDH isozymes are important in oxidizing reactive aldehydes resulting from lipid peroxidation, and, thus, help maintain cellular homeostasis. Increased expression and activity of ALDH isozymes are found in many human cancers and are often associated with poor prognosis. Therefore, the development of inhibitors of the different ALDH enzymes is of interest as means to treat some of these disease states. Here I describe the results of assays designed to characterize the site of interaction and the mode of inhibition for the unique compounds that function as inhibitors of aldehyde dehydrogenase 2 and determine their respective IC50 values with intent to develop structure-activity relationships for future development.
|
Page generated in 0.0941 seconds