11 |
Beyond-the-dipole effects in strong-field photoionization using short intense laser pulsesJobunga, Eric Ouma 23 November 2016 (has links)
Die Entwicklung Freier-Elektronen-Laser und einer neuen Generation von Strahlungsquellen erlaubt die Realisierung hoher Intensitäten und kurzer Pulsdauern. Im Regime niedriger Laserintensitäten war bisher die Dipolnäherung recht erfolgreich bei der Beschreibung der durch die Licht-Materie-Wechselwirkung erzeugten Dynamik, wodurch viele experimentell beobachtete Resultate reproduziert werden konnten. Bei den durch die neuen Strahlungsqullen erzeugten bisher unerreichten Intensitäten und Rönten-Wellenlängen kann die Dipolnäherung allerdings zusammenbrechen. Höhere Multipol-Wechselwirkungen, die mit dem Strahlungsdruck assoziiert werden, sollten dann erwartungsgemäß wichtig zur genauen Beschreibung der Wechselwirkungsdynamiken werden. In dieser Arbeit wird eine Methode zur Lösung der nichtrelativistischen zeitabhängigen Schrödingergleichung zur Beschreibung von Systemen mit einem einzelnen aktiven Elektron, das mit einem Laserfeld wechselwirkt, über die Dipolnäherung hinausgehend erweitert. Dabei wird sowohl die Taylor- als auch die Rayleight-Multipolentwicklung des Retardierungsterms ebener Wellen verwendet. Es wird erwartet, dass die Berücksichtigung höherer Ordnungen der Multipolwechselwirkung zu einer erhöhten Genauigkeit und Richtigkeit der Resultate führen. Weiterhin wird gezeigt, dass die Rayleigh-Multipolentwicklung für gleiche Laserparameter genauer ist und schneller zur Konvergenz der numerischen Rechnung führt. Die nicht-Dipoleffekte spiegeln is sowohl in den differentiellen als auch den totalen Ionisierungswahrscheinlichkeiten in Form von erhöhten Ionisierungsausbeuten, verzerrten ATI Strukturen und einer Asymmetrie in der Photoelektronenwinkelverteilung in der Polarisations und Propagationsrichtung wider. Es wird beobachtet, dass die nicht-Dipoleffekte mit der Intensität, Wellenlänge und Pulsdauer zunehmen. Es werden Ergebnisse sowohl für das Wasserstoffatom als auch das Heliumatom gezeigt. / The development of free-electron lasers and new generation light sources is enabling the realisation of high intensities and short pulse durations. In the weak-field intensity regime, the electric dipole approximation has been quite successful in describing the light-matter interaction dynamics reproducing many of the experimentally observed features. But at the unprecedented intensities and x-ray wavelengths produced by the new light sources, the electric dipole approximation is likely to break down. The role of higher multipole-order terms in the interaction Hamiltonian, associated with the radiation pressure, is then expected to become important in the accurate description of the interaction dynamics. This study extends the solution of the non-relativistic time dependent Schrödinger equation for a single active electron system interacting with short intense laser pulses beyond the standard dipole approximation. This is realized using both the Taylor and the Rayleigh plane-wave multipole expansion series of the spatial retardation term. The inclusion of higher multipole-order terms of the interaction is expected to increase the validity and accuracy of the calculated observables relative to the experimental measurements. In addition, it is shown that for equivalent laser parameters the Rayleigh multipole expansion series is more accurate and efficient in numerical convergence. The investigated non-dipole effects manifest in both differential and total ionization probabilities in form of the increased ion yields, the distorted above-threshold-ionization structure, and asymmetry of the photoelectron angular distribution in both polarization and propagation directions. The non-dipole effects are seen to increase with intensity, wavelength, and pulse duration. The results for hydrogen as well as helium atom are presented in this study.
|
12 |
Propagation of singularities for pseudo-differential operators and generalized Schrödinger propagatorsJohansson, Karoline January 2010 (has links)
<p>In this thesis we discuss different types of regularity for distributions which appear in the theory of pseudo-differential operators and partial differential equations. Partial differential equations often appear in science and technology. For example the Schrödinger equation can be used to describe the change in time of quantum states of physical systems. Pseudo-differential operators can be used to solve partial differential equations. They are also appropriate to use when modeling different types of problems within physics and engineering. For example, there is a natural connection between pseudo-differential operators and stationary and non-stationary filters in signal processing. Furthermore, the correspondence between symbols and operators when passing from classical mechanics to quantum mechanics essentially agrees with symbols and operators in the Weyl calculus of pseudo-differential operators.</p><p>In this thesis we concentrate on investigating how regularity properties for solutions of partial differential equations are affected under the mapping of pseudo-differential operators, and in particular of the free time-dependent Schrödinger operators.</p><p>The solution of the free time-dependent Schrödinger equation can be expressed as a pseudo-differential operator, with non-smooth symbol, acting on the initial condition. We generalize a result about non-tangential convergence, which was obtained by Sjögren and Sjölin (1989) for the free time-dependent Schrödinger equation.</p><p>Another way to describe regularity for a distribution is to use wave-front sets. They do not only describe where the singularities are, but also the directions in which these singularities appear. The first types of wave-front sets (analytical wave-front sets) were introduced by Sato (1969, 1970). Later on Hörmander introduced ``classical'' wave-front sets (with respect to smoothness) and showed results in the context of pseudo-differential operators with smooth symbols, cf. Hörmander (1985).</p><p>In this thesis we consider wave-front sets with respect to Fourier Banach function spaces. Roughly speaking, we take <em>B</em> as a Banach space, which is invariant under translations and embedded between the space of Schwartz functions and the space of temperated distributions. Then we say that the wave-front set of a distribution contains all points (x<sub>0</sub>, ξ<sub>0</sub>) such that no localization of the distribution at x<sub>0</sub>, belongs to <em>FB</em> in the direction ξ<sub>0</sub>. We prove that pseudo-differential operators with smooth symbols shrink the wave-front set and we obtain opposite embeddings by using sets of characteristic points of the operator symbols.</p> / <p>I denna avhandling diskuterar vi olika typer av regularitet för distributioner som uppkommer i teorin för pseudodifferentialoperatorer och partiella differentialekvationer. Partiella differentialekvationer förekommer inom naturvetenskap och teknik. Exempelvis kan Schrödingerekvationen användas för att beskriva förändringen med tiden av kvanttillstånd i fysikaliska system. Pseudodifferentialoperatorer kan användas för att lösa partiella differential\-ekvationer. De användas också för att modellera olika typer av problem inom fysik och teknik. Det finns till exempel en naturlig koppling mellan pseudodifferentialoperatorer och stationära och icke-stationära filter i signalbehandling. Vidare gäller att relationen mellan symboler och operatorer vid övergången från klassisk mekanik till kvantmekanik i huvudsak överensstämmer med symboler och operatorer inom Weylkalkylen för pseudodifferentialoperatorer.</p><p>I den här avhandlingen koncentrerar vi oss på att undersöka hur regularitetsegenskaper för lösningar till partiella differentialekvationer påverkas under verkan av pseudodifferentialoperatorer, och speciellt för de fria tidsberoende Schrödingeroperatorerna.</p><p>Lösningen av den fria tidsberoende Schrödingerekvationen kan uttryckas som en pseudodifferentialoperator, med icke-slät symbol, verkande på begynnelsevillkoret. Vi generaliserar ett resultat om icke-tangentiell konvergens av Sjögren och Sjölin (1989) för den fria tidsberoende Schrödingerekvationen.</p><p>Ett annat sätt att beskriva regularitet hos en distribution är med hjälp av vågfrontsmängder. De beskriver inte bara var singulariteterna finns, utan också i vilka riktningar dessa singulariteter förekommer. De första typerna av vågfrontsmängder (analytiska vågfrontsmängder) introducerades av Sato (1969, 1970). Senare introducerade Hörmander ''klassiska'' vågfrontsmängder (med avseende på släthet) och visade resultat för verkan av pseudodifferentialoperatorer med släta symboler, se Hörmander (1985).</p><p>I denna avhandling betraktar vi vågfrontsmängder med avseende på Fourier Banach funktionsrum. Detta kan ses som att vi låter <em>B</em> vara ett Banachrum, som är invariant under translationer och är inbäddat mellan rummet av Schwartzfunktioner och rummet av tempererade distributioner. Vågfrontsmängden av en distribution innehåller alla punkter (x<sub>0</sub>, ξ<sub>0</sub>) så att ingen lokalisering av distributionen kring x<sub>0</sub>, tillhör <em>FB</em> i riktningen ξ<sub>0</sub>. Vi visar att pseudodifferentialoperatorer med släta symboler krymper vågfrontsmängden och vi får motsatta inbäddningar med hjälp mängder av karakteristiska punkter till operatorernas symboler.</p>
|
13 |
Propagation of singularities for pseudo-differential operators and generalized Schrödinger propagatorsJohansson, Karoline January 2010 (has links)
In this thesis we discuss different types of regularity for distributions which appear in the theory of pseudo-differential operators and partial differential equations. Partial differential equations often appear in science and technology. For example the Schrödinger equation can be used to describe the change in time of quantum states of physical systems. Pseudo-differential operators can be used to solve partial differential equations. They are also appropriate to use when modeling different types of problems within physics and engineering. For example, there is a natural connection between pseudo-differential operators and stationary and non-stationary filters in signal processing. Furthermore, the correspondence between symbols and operators when passing from classical mechanics to quantum mechanics essentially agrees with symbols and operators in the Weyl calculus of pseudo-differential operators. In this thesis we concentrate on investigating how regularity properties for solutions of partial differential equations are affected under the mapping of pseudo-differential operators, and in particular of the free time-dependent Schrödinger operators. The solution of the free time-dependent Schrödinger equation can be expressed as a pseudo-differential operator, with non-smooth symbol, acting on the initial condition. We generalize a result about non-tangential convergence, which was obtained by Sjögren and Sjölin (1989) for the free time-dependent Schrödinger equation. Another way to describe regularity for a distribution is to use wave-front sets. They do not only describe where the singularities are, but also the directions in which these singularities appear. The first types of wave-front sets (analytical wave-front sets) were introduced by Sato (1969, 1970). Later on Hörmander introduced ``classical'' wave-front sets (with respect to smoothness) and showed results in the context of pseudo-differential operators with smooth symbols, cf. Hörmander (1985). In this thesis we consider wave-front sets with respect to Fourier Banach function spaces. Roughly speaking, we take B as a Banach space, which is invariant under translations and embedded between the space of Schwartz functions and the space of temperated distributions. Then we say that the wave-front set of a distribution contains all points (x0, ξ0) such that no localization of the distribution at x0, belongs to FB in the direction ξ0. We prove that pseudo-differential operators with smooth symbols shrink the wave-front set and we obtain opposite embeddings by using sets of characteristic points of the operator symbols. / I denna avhandling diskuterar vi olika typer av regularitet för distributioner som uppkommer i teorin för pseudodifferentialoperatorer och partiella differentialekvationer. Partiella differentialekvationer förekommer inom naturvetenskap och teknik. Exempelvis kan Schrödingerekvationen användas för att beskriva förändringen med tiden av kvanttillstånd i fysikaliska system. Pseudodifferentialoperatorer kan användas för att lösa partiella differential\-ekvationer. De användas också för att modellera olika typer av problem inom fysik och teknik. Det finns till exempel en naturlig koppling mellan pseudodifferentialoperatorer och stationära och icke-stationära filter i signalbehandling. Vidare gäller att relationen mellan symboler och operatorer vid övergången från klassisk mekanik till kvantmekanik i huvudsak överensstämmer med symboler och operatorer inom Weylkalkylen för pseudodifferentialoperatorer. I den här avhandlingen koncentrerar vi oss på att undersöka hur regularitetsegenskaper för lösningar till partiella differentialekvationer påverkas under verkan av pseudodifferentialoperatorer, och speciellt för de fria tidsberoende Schrödingeroperatorerna. Lösningen av den fria tidsberoende Schrödingerekvationen kan uttryckas som en pseudodifferentialoperator, med icke-slät symbol, verkande på begynnelsevillkoret. Vi generaliserar ett resultat om icke-tangentiell konvergens av Sjögren och Sjölin (1989) för den fria tidsberoende Schrödingerekvationen. Ett annat sätt att beskriva regularitet hos en distribution är med hjälp av vågfrontsmängder. De beskriver inte bara var singulariteterna finns, utan också i vilka riktningar dessa singulariteter förekommer. De första typerna av vågfrontsmängder (analytiska vågfrontsmängder) introducerades av Sato (1969, 1970). Senare introducerade Hörmander ''klassiska'' vågfrontsmängder (med avseende på släthet) och visade resultat för verkan av pseudodifferentialoperatorer med släta symboler, se Hörmander (1985). I denna avhandling betraktar vi vågfrontsmängder med avseende på Fourier Banach funktionsrum. Detta kan ses som att vi låter B vara ett Banachrum, som är invariant under translationer och är inbäddat mellan rummet av Schwartzfunktioner och rummet av tempererade distributioner. Vågfrontsmängden av en distribution innehåller alla punkter (x0, ξ0) så att ingen lokalisering av distributionen kring x0, tillhör FB i riktningen ξ0. Vi visar att pseudodifferentialoperatorer med släta symboler krymper vågfrontsmängden och vi får motsatta inbäddningar med hjälp mängder av karakteristiska punkter till operatorernas symboler.
|
14 |
Coulomb breakup of halo nuclei by a time-dependent methodCapel, Pierre 29 January 2004 (has links)
Halo nuclei are among the strangest nuclear structures.<p>They are viewed as a core containing most of the nucleons<p>surrounded by one or two loosely bound nucleons. <p>These have a high probability of presence at a large distance<p>from the core.<p>Therefore, they constitute a sort of halo surrounding the other nucleons.<p>The core, remaining almost unperturbed by the presence<p>of the halo is seen as a usual nucleus.<p><p><P><p><p>The Coulomb breakup reaction is one of the most useful<p>tools to study these nuclei. It corresponds to the<p>dissociation of the halo from the core during a collision<p>with a heavy (high <I>Z</I>) target.<p>In order to correctly extract information about the structure of<p>these nuclei from experimental cross sections, an accurate<p>theoretical description of this mechanism is necessary.<p><p><P><p><p>In this work, we present a theoretical method<p>for studying the Coulomb breakup of one-nucleon halo nuclei.<p>This method is based on a semiclassical approximation<p>in which the projectile is assumed to follow a classical trajectory.<p>In this approximation, the projectile is seen as evolving<p>in a time-varying potential simulating its interaction with the target.<p>This leads to the resolution of a time-dependent Schrödinger<p>equation for the projectile wave function.<p><p><P><p><p>In our method, the halo nucleus is described<p>with a two-body structure: a pointlike nucleon linked to a<p>pointlike core.<p>In the present state of our model, the interaction between<p>the two clusters is modelled by a local potential.<p><p><P><p><p>The main idea of our method is to expand the projectile wave function<p>on a three-dimensional spherical mesh.<p>With this mesh, the representation of the time-dependent potential<p>is fully diagonal.<p>Furthermore, it leads to a simple<p>representation of the Hamiltonian modelling the halo nucleus.<p>This expansion is used to derive an accurate evolution algorithm.<p><p><P><p><p>With this method, we study the Coulomb breakup<p>of three nuclei: <sup>11</sup>Be, <sup>15</sup>C and <sup>8</sup>B.<p><sup>11</sup>Be is the best known one-neutron halo nucleus.<p>Its Coulomb breakup has been extensively studied both experimentally<p>and theoretically.<p>Nevertheless, some uncertainty remains about its structure.<p>The good agreement between our calculations and recent<p>experimental data suggests that it can be seen as a<p><I>s1/2</I> neutron loosely bound to a <sup>10</sup>Be core in its<p>0<sup>+</sup> ground state.<p>However, the extraction of the corresponding spectroscopic factor<p>have to wait for the publication of these data.<p><p><P><p><p><sup>15</sup>C is a candidate one-neutron halo nucleus<p>whose Coulomb breakup has just been studied experimentally.<p>The results of our model are in good agreement with<p>the preliminary experimental data. It seems therefore that<p><sup>15</sup>C can be seen as a <sup>14</sup>C core in its 0<sup>+</sup><p>ground state surrounded by a <I>s1/2</I> neutron.<p>Our analysis suggests that the spectroscopic factor<p>corresponding to this configuration should be slightly lower<p>than unity.<p><p><P><p><p>We have also used our method to study the Coulomb breakup<p>of the candidate one-proton halo nucleus <sup>8</sup>B.<p>Unfortunately, no quantitative agreement could be obtained<p>between our results and the experimental data.<p>This is mainly due to an inaccuracy in the treatment<p>of the results of our calculations.<p>Accordingly, no conclusion can be drawn about the pertinence<p>of the two-body model of <sup>8</sup>B before an accurate reanalysis of these<p>results.<p><p><P><p><p>In the future, we plan to improve our method in two ways.<p>The first concerns the modelling of the halo nuclei.<p>It would be indeed of particular interest to test<p>other models of halo nuclei than the simple two-body structure<p>used up to now.<p>The second is the extension of this semiclassical model to<p>two-neutron halo nuclei.<p>However, this cannot be achieved<p>without improving significantly the time-evolution algorithm so as to<p>reach affordable computational times. / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
|
Page generated in 0.1433 seconds