Spelling suggestions: "subject:"tisku"" "subject:"tisi2""
1 |
A prelude to neurogenesisAaku-Saraste, E. (Eeva) 31 August 1999 (has links)
Abstract
All neurons and macroglial cells of vertebrates derive from the neuroepithelium. Neuroepithelial (NE) cells first proliferate and, after closure of the neural tube, some cells start generating neurons. It is still unclear what triggers differentiation but apparently there is interplay between extrinsic (secreted or transmembrane signals) and intrinsic factors. Diriving from the embryonic ectoderm, the NE cells inherit epithelial characteristics. It has been shown in other developmental systems that epithelial determinants, such as cell-cell contacts and contact to basal laminar components can guide differentiation.
The key epithelial features include cell polarity, and tight junctions. We studied these in the NE at two developmental stages, the neural plate, a proliferative stage and the neural tube, a differentiative stage.
The polarity of membrane proteins in NE cells was studied with polarly budding viruses. Mouse embryos were infected with Fowl plague- and vesicular stomatitis viruses and cultured in a whole embryo culture system. Viral envelope proteins (HA and G-protein) were localized by indirect immunofluorescence and immunoelectron microscopy. HA was polarized in the plate stage neuroepithelial cells, whereas in the tube it was not polarized anymore.
It is also shown by penetrance of apically injected horseradish peroxidase that in the neural plate, NE cells have functional tight junctions. At this stage, they also express occludin, a transmembrane protein of tight junctions, as shown by indirect immunofluorescence. In the neural tube, the paracellular barrier is lost and there is no occludin expression. In contrast, expression of ZO-1, a cytoplasmic protein binding to occiudin, is upregulated.
The downregulation of these epithelial features occurs in all NE cells, irrespective of their mode of division and before any neurons are generated in the NE. The change is initiated already at the plate stage and coincides with the switch from E- to N-cadherin. Later, with birth of neurons, the proliferative cell layer also looses contact to basal lamina. This is probably an important step in the regulation of neurogenesis. Furthermore, lack of apico-basolateral polarity of non-anchored membrane proteins may contribute to the mechanism of rapid neuron generation.
Until now, it has been impossible to distinguish a neuroepithelial cell preparing for neuron generation from the surrounding cells that give rise to two precursor cells. In this study, the immediate neuron precursors are shown to express the antiproliferative gene TIS2 1. Using this new marker and ISH in serial sections, we show that the switch to differentiation is initiated in single NE cells.
|
2 |
Novel in vivo imaging approaches to study embryonic and adult neurogenesis in the mouseAttardo, Alessio 15 February 2007 (has links) (PDF)
Neurogenesis is the process of generation of neurons during embryonic development and adulthood. The focus of this doctoral work is the study of the cell biological aspects of neurogenesis and the mechanisms regulating the switch of neural stem cells from proliferation to differentiation. During embryonic development neurogenic divisions occur at the apical or basal side of the pseudostratified epithelium that forms the wall of the neural tube, the neuroepithelium. Apical asymmetric neurogenic divisions (AP) give rise to a neuron and a progenitor cell, while basal symmetric neurogenic divisions (BP) give rise to two neurons. The first part of this thesis is focused on the study of some cell biological aspects of BPs. We first validated the use of the Tis21-GFP knock in mouse line, previously generated in our laboratory. We found that the totality of neurogenic progenitors is marked by the expression of a nuclear GFP. We calculated the abundance of BPs overtime since the onset of neurogenesis showing that BPs overcome APs over development. We studied the loss of apical contact of the basal dividing cells. We found that both neurogenic and non-neurogenic basally dividing progenitors miss the apical contact; which is lost prior mitosis. We generated and characterized a second mouse line, the Tubb3-GFP line expressing a plasma membrane-localized GFP in neurons. These two lines were crossed to obtain a new line (TisTubb-GFP) allowing detection of neurogenic divisions and tracking daughter cells. Using this model: (i) we imaged symmetric neurogenic divisions of BPs, identifying daughter cells as neurons, during imaging; (ii) we compared the kinetics of betaIII-tubulin-GFP appearance after apical or basal mitosis, showing that daughters of BPs express betaIII-tubulin-GFP faster than daughters coming from apical divisions; (iii) we imaged neuronal migration and localization of the Golgi apparatus. Neurogenesis in the adult is confined to two specific regions in the telencephalon: the sub ependymal zone, lining the ventricle, and dentate gyrus of the hippocampus. The second part of this thesis focuses on the adult neurogenic progenitors lineage. Tis21-GFP expression was found and characterized in the two adult neurogenic regions from early postnatal to adulthood. Using a panel of markers for the adult neurogenic cell lineage and confocal imaging, we characterized Tis21-GFP expression, in the dentate gyrus. Tis21-GFP is first expressed in the neurogenic subpopulation of doublecortin positive cells. Tis21-GFP is inherited by the neurons and eventually degraded. Moreover, our data suggest that mitotic Tis21-GFP cells are an indicator of the levels of neurogenesis more accurate than doublecortin positive cells, in the early postnatal mouse. (Anlage Quick time movies 77,88 MB)
|
3 |
Novel in vivo imaging approaches to study embryonic and adult neurogenesis in the mouseAttardo, Alessio 20 December 2006 (has links)
Neurogenesis is the process of generation of neurons during embryonic development and adulthood. The focus of this doctoral work is the study of the cell biological aspects of neurogenesis and the mechanisms regulating the switch of neural stem cells from proliferation to differentiation. During embryonic development neurogenic divisions occur at the apical or basal side of the pseudostratified epithelium that forms the wall of the neural tube, the neuroepithelium. Apical asymmetric neurogenic divisions (AP) give rise to a neuron and a progenitor cell, while basal symmetric neurogenic divisions (BP) give rise to two neurons. The first part of this thesis is focused on the study of some cell biological aspects of BPs. We first validated the use of the Tis21-GFP knock in mouse line, previously generated in our laboratory. We found that the totality of neurogenic progenitors is marked by the expression of a nuclear GFP. We calculated the abundance of BPs overtime since the onset of neurogenesis showing that BPs overcome APs over development. We studied the loss of apical contact of the basal dividing cells. We found that both neurogenic and non-neurogenic basally dividing progenitors miss the apical contact; which is lost prior mitosis. We generated and characterized a second mouse line, the Tubb3-GFP line expressing a plasma membrane-localized GFP in neurons. These two lines were crossed to obtain a new line (TisTubb-GFP) allowing detection of neurogenic divisions and tracking daughter cells. Using this model: (i) we imaged symmetric neurogenic divisions of BPs, identifying daughter cells as neurons, during imaging; (ii) we compared the kinetics of betaIII-tubulin-GFP appearance after apical or basal mitosis, showing that daughters of BPs express betaIII-tubulin-GFP faster than daughters coming from apical divisions; (iii) we imaged neuronal migration and localization of the Golgi apparatus. Neurogenesis in the adult is confined to two specific regions in the telencephalon: the sub ependymal zone, lining the ventricle, and dentate gyrus of the hippocampus. The second part of this thesis focuses on the adult neurogenic progenitors lineage. Tis21-GFP expression was found and characterized in the two adult neurogenic regions from early postnatal to adulthood. Using a panel of markers for the adult neurogenic cell lineage and confocal imaging, we characterized Tis21-GFP expression, in the dentate gyrus. Tis21-GFP is first expressed in the neurogenic subpopulation of doublecortin positive cells. Tis21-GFP is inherited by the neurons and eventually degraded. Moreover, our data suggest that mitotic Tis21-GFP cells are an indicator of the levels of neurogenesis more accurate than doublecortin positive cells, in the early postnatal mouse. (Anlage Quick time movies 77,88 MB)
|
Page generated in 0.0394 seconds