1 |
Geodesic paths and topological charges in quantum systemsGrangeiro Souza Barbosa Lima, Tiago Aecio 16 December 2016 (has links)
This dissertation focuses on one question: how should one drive an experimentally prepared state of a generic quantum system into a different target-state, simultaneously minimizing energy dissipation and maximizing the fidelity between the target and evolved-states? We develop optimal adiabatic driving protocols for general quantum systems, and show that these are geodesic paths.
Geometric ideas have always played a fundamental role in the understanding and unification of physical phenomena, and the recent discovery of topological insulators has drawn great interest to topology from the field of condensed matter physics. Here, we discuss the quantum geometric tensor, a mathematical object that encodes geometrical and topological properties of a quantum system. It is related to the fidelity susceptibility (an important quantity regarding quantum phase transitions) and to the Berry curvature, which enables topological characterization through Berry phases.
A refined understanding of the interplay between geometry and topology in quantum mechanics is of direct relevance to several emergent technologies, such as quantum computers, quantum cryptography, and quantum sensors. As a demonstration of how powerful geometric and topological ideas can become when combined, we present the results of an experiment that we recently proposed. This experimental work was done at the Google Quantum Lab, where researchers were able to visualize the topological nature of a two-qubit system in sharp detail, a startling contrast with earlier methods. To achieve this feat, the optimal protocols described in this dissertation were used, allowing for a great improvement on the experimental apparatus, without the need for technical engineering advances.
Expanding the existing literature on the quantum geometric tensor using notions from differential geometry and topology, we build on the subject nowadays known as quantum geometry. We discuss how slowly changing a parameter of a quantum system produces a measurable output of its response, merely due to its geometric nature. Next, we topologically characterize different classes of Hamiltonians using the Berry monopole charges, and establish their topological protection. Finally, we explore how such knowledge allows one to access topologically forbidden regions by adiabatically breaking and reestablishing symmetries.
|
2 |
Difração de luz com momento angular orbital e suas aplicações no domínio coerente e incoerente / Difraction of light with orbital angular momentum and its applications in the coherent and incoherent domainsSilva, Alcenísio José de Jesus 20 September 2012 (has links)
In this doctoral thesis we investigate several experiments exploring the light orbital angular momentum and the Fraunhofer diffraction of light. Our investigations goes from coherent propagation, continue through incoherent propagation, arriving at semiclassical states used to explore one fundamental problem in quantum mechanics, i. e., the Born’s rule. Therefore, concerning coherent propagation of light with orbital angular momentum, we were first involved with studies about Fraunhofer diffraction of this type of light, by a single slit and by a square aperture. In the former work we studied the Fraunhofer
diffraction when the slit center is aligned with the vortex center and when it is out of the vortex center. Concerning the work related to the square aperture, we show that the diffraction by such aperture is not sufficient to characterize the topological charge. Continuing the works, we also investigate the Fraunhofer diffraction of light with orbital angular momentum of fractional topological charge in the real space. An interesting phenomenon, the birth of a vortex, was studied at Fraunhofer plane, showing new
conclusions in the study of fractional topological charges. Our studies continued with the Fraunhofer propagation of vortices in incoherent light, unveiling strong correlations between incoherent vortices. Finally, we explored semiclassical aspects of light with orbital angular momentum. Firstly, the topological charge determination via the spatial probability distribution of detection of photons diffracted by a triangular aperture. After, the validation of the Born’s rule using diffraction, by three slits disposed in a triangular configuration, of photons with an extra phase, i. e., the azimuthal phase added to the
path phase. / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Nesta tese de doutorado investigamos diversos experimentos que exploram o momento angular orbital da luz e a difração de Fraunhofer. Nossas investigações abrangeram desde propagação coerente, passando por propagação incoerente, chegando a estados semiclássicos usados para explorar uma questão fundamental da mecânica quântica, a saber, a regra de Born. Portanto, no que concerne à propagação de luz coerente com momento angular orbital, estivemos envolvidos primeiramente com estudos da difração de Fraunhofer deste tipo de luz, por uma fenda simples e por uma abertura quadrada. No primeiro trabalho estudamos a difração de Fraunhofer quando o centro da fenda está
alinhado com o centro do vórtice e quando está deslocado do centro do vórtice. Quanto ao trabalho relacionado à abertura quadrada, mostramos que a difração de Fraunhofer por tal abertura não permite caracterizar a carga topológica. Prosseguindo os trabalhos, investigamos também a difração no plano de Fraunhofer de luz com momento angular de carga fracionária no plano real. Um interessante fenômeno, o nascimento de um vórtice, foi estudado no plano de Fraunhofer, mostrando novas conclusões nos estudos relacionados à carga fracionária. Nossos estudos continuaram com a propagação de Fraunhofer de vórtices em luz incoerente, revelando fortes correlações entre vórtices
incoerentes. Por fim, exploramos aspectos semiclássicos da luz com momento angular orbital. Primeiramente, a determinação da carga topológica via distribuição de probabilidade espacial de detecção de fótons difratados por uma abertura triangular. Posteriormente, a validação da regra de Born utilizando difração, por três fendas simples dispostas na forma triangular, de fótons com uma fase extra, ou seja, a fase azimutal, adicionada à fase de caminho.
|
Page generated in 0.0865 seconds