Spelling suggestions: "subject:"proposes"" "subject:"toposequences""
1 |
Aspects of coherent logicGorman, Judith A. January 1987 (has links)
No description available.
|
2 |
The continuum hypothesis in algebraic set theoryKusalik, T. P., January 1900 (has links)
Thesis (M.Sc.). / Written for the Dept. of Mathematics and Statistics. Title from title page of PDF (viewed 2009/06/25). Includes bibliographical references.
|
3 |
Aspects of coherent logicGorman, Judith A. January 1987 (has links)
No description available.
|
4 |
Logical and sheaf theoretic methods in the study of geometric fields in sheaf toposes over Boolean spaces and applications to Von Neumann regular ringsMacCaull, Wendy Alwilda. January 1984 (has links)
No description available.
|
5 |
Logical and sheaf theoretic methods in the study of geometric fields in sheaf toposes over Boolean spaces and applications to Von Neumann regular ringsMacCaull, Wendy Alwilda. January 1984 (has links)
We investigate some properties of (geometric) fields in toposes of sheaves over Boolean spaces and establish the internal validity of a number of classical theorems from Algebraic Geometry and the theory of ordered fields. We then use our results to obtain, via sheaf representations, some know theorems about (von Neumann) regular rings as well as some new theorems for regular f-rings. By contrast with previous investigations in these last two subjects (Saracino and Weispfenning {39} and van den Dries {42}) a more natural approach, inspired by work of Macintyre {30}, Loullis {29}, Bunge-Reyes {7} and Bunge {4},{5} is employed here. In addition to sheaf theoretic methods we use a variety of logical methods from geometric logic, infinitary intuitionistic logic and model theory. We also prove some new theorems on the transfer of subobjects along certain morphisms and a "lifting theorem" taking truth from statements about global sections to their internal validity.
|
6 |
Gluon phenomenology and a linear topos : a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Physics at the University of Canterbury /Sheppeard, Marni Dee. January 2007 (has links)
Thesis (Ph. D.)--University of Canterbury, 2007. / Typescript (photocopy). Includes bibliographical references (p. 127-135). Also available via the World Wide Web.
|
7 |
Presheaf toposes and propositional logic.Squire, Richard. Banaschewski, B. Unknown Date (has links)
Thesis (Ph.D.)--McMaster University (Canada), 1989. / Source: Dissertation Abstracts International, Volume: 52-10, Section: B, page: 5313. Supervisor: B. Banaschewski.
|
8 |
Algèbres à factorisation et Topos supérieurs exponentiables / Factorisation Algebra and Exponentiable Higher ToposesLejay, Damien 23 September 2016 (has links)
Cette these est composee de deux parties independantes ayant pour point commun l’utilisation intensive de la theorie des ∞-categories. Dans la premiere, on s’interesse aux liens entre deux approches differentes de la formalisation de la physique des particules : les algebres vertex et les algebres a factorisation a la Costello. On montre en particulier que dans le cas des theories dites topologiques, elles sont equivalentes. Plus precisement, on montre que les∞-categories de fibres vectoriels factorisant non-unitaires sur une variete algebrique complexe lisse X est equivalente a l’∞-categorie des EM-algebres non-unitaires et de dimension finie, ou M est la variete topologique associee a X. Dans la seconde, avec Mathieu Anel, nous etudions la caracterisation de l’exponentiabilite dans l’∞-categorie des ∞-topos. Nous montrons que les ∞-topos exponentiables sont ceux dont l’∞-categorie de faisceaux est continue. Une consequence notable est que l’∞-categorie des faisceaux en spectres sur un ∞-topos exponentiable est un objet dualisable de l’∞-categorie des ∞-categories cocompletes stables munie de son produit tensoriel. Ce chapitre contient aussi une construction des ∞-coends a partir de la theorie du produit tensoriel d’∞- categories cocompletes, ainsi qu’une description des ∞-categories de faisceaux sur un ∞-topos exponentiable en termes de faisceaux de Leray. / This thesis is made of two independent parts, both relying heavily on the theory of ∞-categories. In the first chapter, we approach two different ways to formalize modern particle physics, through the theory of vertex algebras and the theory of factorisation algebras a la Costello. We show in particular that in the case of ‘topological field theories’, they are equivalent. More precisely, we show that the ∞-category of non-unital factorization vector bundles on a smooth complex variety X is equivalent to the ∞-category of non-unital finite dimensional EM-algebras where M is the topological manifold associated to X. In the second one, with Mathieu Anel, we study a characterization of exponentiable objects of the∞-category of∞-toposes.We show that an ∞-topos is exponentiable if and only if its ∞-category of sheaves of spaces is continuous. An important consequence is the fact that the ∞-category of sheaves of spectra on an exponentiable ∞-topos is a dualisable object of the ∞-category of cocontinuous stable ∞-categories endowed with its usual tensor product. This chapter also includes a ix construction of∞-coends from the theory of tensor products of cocomplete∞- categories, together with a description of∞-categories of sheaves on exponentiable ∞-toposes in terms of Leray sheaves.
|
Page generated in 0.0502 seconds