1 |
Non-linear dynamics of Alfvén eigenmodes excited by fast ions in tokamaksBergkvist, Tommy January 2007 (has links)
The tokamak is so far the most promising magnetic configuration for achieving a net production of fusion energy. The D-T fusion reactions result in 3.5 MeV alpha-particles, which may destabilize Alfvén eigenmodes through wave-particle interaction. These instabilities redistribute the alpha-particles from the central region of the plasma towards the edge, where they are thermalized, and hence result in a reduced heating efficiency. The high-energy alpha-particles may even be thrown out of the plasma and may damage the wall. To investigate the destabilization of Alfvén eigenmodes by high-energy ions, ion cyclotron resonance heating (ICRH) and neutral beam injection (NBI) are often used to create a high-energy tail on the distribution function. The ICRH does not only produce high-energy anisotropic tails, it also decorrelates the wave-particle interaction with the Alfvén eigenmodes. Without decorrelation of the wave-particle interaction an ion will undergo a superadiabatic oscillation in phase space and there will be no net transfer of energy to the mode. For the thermal ions the decorrelation from collisions dominates while for the high-energy ions the decorrelation from ICRH dominates. As the unstable modes grow up, the gradients in phase space, which drive the mode, are reduced, resulting in a weaker drive. The dynamics of the system becomes non-linear due to a continuous restoration of the gradients by D-T reactions and ICRH. In this thesis the non-linear dynamics of toroidal Alfvén eigenmodes (TAEs) during ICRH has been investigated using the SELFO code. The SELFO code, which calculates the distribution function during ICRH self-consistently using a Monte-Carlo metod, has been upgraded to include interactions with TAEs. The fast decay of the mode amplitude as the ICRH is switched off, which is seen in experiments, as well as the oscillation of the mode amplitude as the distribution function is repetetively built up by the ICRH and flattened by the TAE has been reproduced using numerical simulations. In the presence of several unstable modes the dynamics become more complicated. The redistribution of an alpha-particle slowing down distribution function as well as the reduced heating efficiency in the presence of several modes has also been investigated. / QC 20100628
|
2 |
The dynamics of Alfvén eigenmodes excited by energetic ions in toroidal plasmasTholerus, Emmi January 2016 (has links)
The future fusion power plants that are based on magnetic confinement will deal with plasmas that inevitably contain energetic (non-thermal) particles. These particles come, for instance, from fusion reactions or from external heating of the plasma. Ensembles of energetic ions can excite eigenmodes in the Alfvén frequency range to such an extent that the resulting wave fields redistribute the energetic ions, and potentially eject them from the plasma. The redistribution of ions may cause a substantial reduction of heating efficiency. Understanding the dynamics of such instabilities is necessary to optimise the operation of fusion experiments and of future fusion power plants. Two models have been developed to simulate the interaction between energetic ions and Alfvén eigenmodes. One is a bump-on-tail model, of which two versions have been developed: one fully nonlinear and one quasilinear. The quasilinear version has a lower dimensionality of particle phase space than the nonlinear one. Unlike previous similar studies, the bump-on-tail model contains a decorrelation of the wave-particle phase in order to model stochasticity of the system. When the characteristic time scale for macroscopic phase decorrelation is similar to or shorter than the time scale of nonlinear wave-particle dynamics, the nonlinear and the quasilinear descriptions quantitatively agree. A finite phase decorrelation changes the growth rate and the saturation amplitude of the wave mode in systems with an inverted energy distribution around the wave-particle resonance. Analytical expressions for the correction of the growth rate and the saturation amplitude have been derived, which agree well with numerical simulations. A relatively weak phase decorrelation also diminishes frequency chirping events of the eigenmode. The second model is called FOXTAIL, and it has a wider regime of validity than the bump-on-tail model. FOXTAIL is able to simulate systems with multiple eigenmodes, and it includes effects of different individual particle orbits relative to the wave fields. Simulations with FOXTAIL and the nonlinear bump-on-tail model have been compared in order to determine the regimes of validity of the bump-on-tail model quantitatively. Studies of two-mode scenarios confirmed the expected consequences of a fulfillment of the Chirikov criterion for resonance overlap. The influence of ICRH on the eigenmode-energetic ion system has also been studied, showing qualitatively similar effects as seen by the presence of phase decorrelation. Another model, describing the efficiency of fast wave current drive, has been developed in order to study the influence of passive components close to the antenna, in which currents can be induced by the antenna generated wave field. It was found that the directivity of the launched wave, averaged over model parameters, was lowered by the presence of passive components in general, except for low values of the single pass damping of the wave, where the directivity was slightly increased, but reversed in the toroidal direction. / De framtida fusionskraftverken baserade på magnetisk inneslutning kommer att hantera plasmor som oundvikligen innehåller energetiska (icke-termiska) partiklar. Dessa partiklar kommer exempelvis från fusionsreaktioner eller från externa uppvärmningsmekanismer av plasmat. Ensembler av energetiska joner kan excitera egenmoder i Alfvén-frekvensområdet i en sådan utsträckning att de resulterande vågfälten omfördelar de energetiska jonerna i rummet, och potentiellt slungar ut jonerna ur plasmat. Omfördelningen av joner kan orsaka en väsentligen minskad uppvärmningseffekt. Det är nödvändigt att förstå dynamiken hos denna typ av instabilitet för att kunna optimera verkningsgraden hos experiment och hos framtida fusionskraftverk. Två modeller har utvecklats för att simulera interaktionen mellan energetiska joner och Alfvén-egenmoder. Den första är en bump-on-tail-modell, av vilken två versioner har utvecklats: en fullt icke-linjär och en kvasi-linjär. I den kvasi-linjära versionen har partiklarnas fasrum en lägre dimensionalitet än i den icke-linjära versionen. Till skillnad från tidigare liknande studier innehåller denna bump-on-tail-modell en dekorrelation av våg-partikelfasen för att modellera stokasticitet hos systemet. När den karakteristiska tidsskalan för makroskopisk fasdekorrelation är ungefär samma som eller kortare än tidsskalan för icke-linjär våg-partikeldynamik så stämmer den icke-linjära och den kvasi-linjära beskrivningen överens kvantitativt. En ändlig fasdekorrelation förändrar vågmodens tillväxthastighet och satureringsamplitud i system med en inverterad energifördelning omkring våg-partikelresonansen. Analytiska uttryck för korrektionen av tillväxthastigheten och satureringsamplituden har härletts, vilka stämmer väl överens med numeriska simuleringar. En relativt svag fasdekorrelation försvagar även "frequency chirping events" (snabba frekvensskiftningar i korttids-Fourier-transformen av egenmodens amplitudutveckling) hos egenmoden. Den andra modellen, kallad FOXTAIL, har ett mycket bredare giltighetsområde än bump-on-tail-modellen. FOXTAIL kan simulera system med flera egenmoder, och den inkluderar effekter av olika enskilda partikelbanor relativt vågfälten. Simuleringar med FOXTAIL och med bump-on-tail-modellen har jämförts för att kvantitativt bestämma bump-on-tail-modellens giltighetsområde. Studier av scenarier med två egenmoder bekräftar de förväntade effekterna av när Chirikov-kriteriet för resonansöverlapp uppfylls. Även inflytandet av ICRH på dynamiken mellan egenmoder och energetiska joner har studerats, vilket har visat kvalitativt liknande effekter som har observerats i närvaron av fasdekorrelation. En annan modell, vilken beskriver effektiviteten hos "fast wave current drive" (strömdrivning med snabba magnetosoniska vågor), har utvecklats för att studera inflytandet av passiva komponenter nära antennen, i vilka strömmar kan induceras av vågfälten som genereras av antennen. Det visades att den utskickade vågens direktivitet, medelvärdesbildat över modellparametrar, generellt sett minskade vid närvaron av passiva komponenter, förutom vid låg "sinlge pass damping" (dämpning av vågen vid propagering genom hela plasmat), då direktiviteten istället ökade något, men bytte tecken i toroidal riktning. / <p>QC 20160927</p>
|
3 |
The dynamics of Alfvén eigenmodes excited by energetic ions in toroidal plasmasTholerus, Emmi January 2015 (has links)
Experiments for the development of fusion power that are based on magnetic confinement deal with plasmas that inevitably contain energetic (non-thermal) particles. These particles come e.g. from fusion reactions or from external heating of the plasma. Ensembles of energetic ions can excite plasma waves in the Alfvén frequency range to such an extent that the resulting wave fields redistribute the energetic ions, and potentially eject them from the plasma. The redistribution of ions may cause a substantial reduction heating efficiency, and it may damage the inner walls and other components of the vessel. Understanding the dynamics of such instabilities is necessary to optimise the operation of fusion experiments and of future fusion power plants. A Monte Carlo model that describes the nonlinear wave-particle dynamics in a toroidal plasma has been developed to study the excitation of the abovementioned instabilities. A decorrelation of the wave-particle phase is added in order to model stochasticity of the system (e.g. due to collisions between particles). Based on the nonlinear description with added phase decorrelation, a quasilinear version of the model has been developed, where the phase decorrelation has been replaced by a quasilinear diffusion coefficient in particle energy. When the characteristic time scale for macroscopic phase decorrelation becomes similar to or shorter than the time scales of nonlinear wave-particle dynamics, the two descriptions quantitatively agree on a macroscopic level. The quasilinear model is typically less computationally demanding than the nonlinear model, since it has a lower dimensionality of phase space. In the presented studies, several effects on the macroscopic wave-particle dynamics by the presence of phase decorrelation have been theoretically and numerically analysed, e.g. effects on the growth and saturation of the wave amplitude, and on the so called frequency chirping events with associated hole-clump pair formation in particle phase space. Several effects coming from structures of the energy distribution of particles around the wave-particle resonance has also been studied. / <p>QC 20150330</p>
|
Page generated in 0.067 seconds