1 |
Solução de problemas de transporte em meios participantes, na geometria plana paralela, para condições de contorno geraisLuís Antonio Waack Bambace 01 March 1990 (has links)
Neste trabalho aborda-se a solução da equação de transporte radiativo unidimensional em meios participantes na geometria plana paralela. Por meio participante entende-se um meio que tanto emite, como absorve e espalha a radiação eletromagnética. Na geometria plana paralela tem-se duas placas infinitas separadas por uma meio participante. Usou-se o método de Galerkin iterado, para atacar este problema escrito na forma integral, para uma condição de contorno geral onde as fronteiras do sistema tanto podem emitir radiação, como refleti-la especular e/ou difusamente. Com base nos trabalhos que abordaram as propriedades de convergência de soluções iteradas para equações integrais de Fredholm de segunda espécie, estudou-se também as potencialidades de soluções iteradas cujas soluções de partida fossem obtidas pelo método dos harmônicos esféricos, em especial para o caso do método mais simples de soluçõa existente, que é o método P1. Como o método P1, não é capaz de discriminar a refletividade especular da difusa nos contornos, derivou-se a formulação P9 como um método de comparação, com o intuito de se mostrar as tendências relativas ao efeito do tipo de refletividade no contorno, na qualidade das soluções aproximadas de baixa ordem.
|
Page generated in 0.1445 seconds