• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 54
  • 23
  • 22
  • 9
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 224
  • 85
  • 54
  • 32
  • 32
  • 31
  • 31
  • 26
  • 23
  • 23
  • 23
  • 21
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Blattwasserzustand und Wasserumsatz von vier Buchenwäldern entlang eines Niederschlagsgradienten in Mitteldeutschland / Leaf Water Relations and Stand Transpiration of four Beech Forests across a Precipitation Gradient in Central Germany

Schipka, Florian 29 January 2003 (has links)
No description available.
202

Contribution à la détermination de la courbe de pression de vapeur saturante de l'eau pure dans la plage de -80 °C à +100 °C, avec une très haute exactitude

Mokdad, Sid-Ali 28 September 2012 (has links) (PDF)
La détermination des propriétés physiques de l'eau pure, notamment la pression de vapeur saturante en fonction de la température, est un enjeu majeur en humidité et identifié comme tel par le Comité Consultatif de Thermométrie (CCT-WG6) sous-groupe Humidité du Comité Technique de Température (TC-T) afin d'améliorer les incertitudes des références nationales en humidité. A cette fin, le LNE-CETIAT et le LNE-Cnam ont développé conjointement un dispositif expérimental permettant d'accéder au couple température / pression de vapeur saturante de l'eau pure. Le principe est basé sur une mesure statique de la pression et de la température dans une cellule d'équilibre associée à un calorimètre quasi-adiabatique. La gamme de température d'équilibre couverte s'étend de 193,15 K à 373,15 K, correspondant à une pression de vapeur saturante allant de 0,06 Pa à 105 Pa.Ce travail présente la description, la réalisation et la caractérisation métrologique de ce nouveau dispositif expérimentale. Les résultats des mesures expérimentales sont comparés avec les travaux théoriques et expérimentaux les plus récents. Le budget d'incertitude finale prend en compte la contribution de la mesure de pression, de la mesure de température et des effets parasites telles que la transpiration thermique et la pression aérostatique. Grace aux différentes solutions mises en œuvre, la contribution des mesures de température dans le bilan d'incertitude globale est réduite. La part prépondérante reste essentiellement associée à la mesure de pression.
203

Thermotolerance of cotton

Cottee, Nicola Sandra January 2009 (has links)
Doctor of Philosophy (PhD) / The Australian cotton industry has developed high yielding and high quality fibre production systems and attributes a significant contribution of this achievement to highly innovative breeding programs, specifically focused on the production of premium quality lint for the export market. Breeding programs have recently shifted attention to the development of new germplasm with superior stress tolerance to minimise yield losses attributed to adverse environmental conditions and inputs such as irrigation, fertilisers and pesticides. Various contributors to yield, such as physiology, biochemistry and gene expression have been implemented as screening tools for tolerance to high temperatures under growth cabinet and laboratory conditions but there has been little extension of these mechanisms to field based systems. This study evaluates tools for the identification of specific genotypic thermotolerance under field conditions using a multi-level ‘top down’ approach from crop to gene level. Field experiments were conducted in seasons 1 (2006) and 3 (2007) at Narrabri (Australia) and season 2 (2006) in Texas (The United States of America) and were supplemented by growth cabinet experiments to quantify cultivar differences in yield, physiology, biochemical function and gene expression under high temperatures. Whole plants were subjected to high temperatures in the field through the construction of Solarweave® tents and in the growth cabinet at a temperature of 42 oC. The effectiveness of these methods was then evaluated to establish a rapid and reliable screening tool for genotype specific thermotolerance that could potentially improve the efficiency of breeding programs and aid the development to high yielding cultivars for hot growing regions. Cotton cultivars Sicot 53 and Sicala 45 were evaluated for thermotolerance using crop level measurements (yield and fibre quality) and whole plant measurements (fruit retention) to determine the efficacy of these measurements as screening tools for thermotolerance under field conditions. Sicot 53 was selected as a relatively thermotolerant cultivar whereas Sicala 45 was selected as a cultivar with a lower relative thermotolerance and this assumption was made on the basis of yield in hot and cool environments under the CSIRO Australian cotton breeding program. Yield and fruit retention were lower under tents compared with ambient conditions in all 3 seasons. Yield and fruit retention were highly correlated in season 1 and were higher for Sicot 53 compared to Sicala 45 suggesting that fruit retention is a primary limitation to yield in a hot season. Thus yield and fruit retention are good indicators of thermotolerance in a hot season. Temperature treatment and cultivar differences were determined for fibre quality in seasons 1 and 3; however, quality exceeded the industry minimum thereby indicating that fibre quality is not a good determinant of thermotolerance. Physiological determinants of plant functionality such as photosynthesis, electron transport rate, stomatal conductance and transpiration rate were determined for cultivars Sicot 53 and Sicala 45 under the tents and an index of these parameters was also analysed to determine overall plant physiological capacity in the field. Physiological capacity was also determined under high temperatures in the growth cabinet using a light response curve at various levels of photosynthetically active radiation (PAR). Photosynthesis and electron transport rate decreased, whilst stomatal conductance and transpiration rate increased under the tents as well as under high temperatures in the growth cabinet. Photosynthesis and electron transport rate were higher for Sicot 53 but stomatal conductance and transpiration rate were higher for Sicala 45 under the tents. No cultivar differentiation was evident for plants grown under high temperatures in the growth cabinet. Temperature treatment and cultivar differences in physiological function were greater in a hot year (season 1), thereby indicating the importance of cultivar selection for thermotolerance in the presence of stress. Electron transport rate was correlated with yield in season 1, thus suggesting the suitability of this method for broad genotypic screening for thermotolerance under field conditions. Biochemical processes such as membrane integrity and enzyme viability were used to determine cultivar specific thermotolerance under high temperature stress in the laboratory, field and growth cabinet. Electrolyte leakage is an indicator of decreased membrane integrity and may be estimated by the relative electrical conductivity or relative cellular injury assays. The heat sensitivity of dehydrogenase activity, a proxy for cytochrome functionality and capacity for mitochondrial electron transport, may be quantified spectrophotometrically. Cellular membrane integrity and enzyme viability decreased sigmoidally with exposure to increasing temperatures in a water bath. Membrane integrity was higher for Sicot 53 compared with Sicala 45 under the tents and under high temperatures in the growth cabinet. No temperature treatment or cultivar differences were found for enzyme viability under the tents; however, enzyme viability for Sicala 45 was higher in the growth cabinet compared with Sicot 53. Relative electrical conductivity was strongly correlated with yield under ambient field conditions and under the tents, suggesting impairment of electron flow through photosynthetic and/or respiratory pathways, thus contributing to lower potential for ATP production and energy generation for yield contribution. Thus, the membrane integrity assay was considered to be a rapid and reliable tool for thermotolerance screening in cotton cultivars. Gene expression was examined for cultivars Sicot 53 and Sicala 45 grown under high (42 oC) temperatures in the growth cabinet. Rubisco activase expression was quantified using quantitative real-time polymerase chain reaction analysis and was decreased under high temperatures and was lower for Sicala 45 than Sicot 53. Maximum cultivar differentiation was found after 1.0 h exposure to high temperatures and hence, leaf tissue sampled from this time point was further analysed for global gene profiling using cDNA microarrays. Genes involved in metabolism, heat shock protein generation, electron flow and ATP generation were down-regulated under high temperatures in the growth cabinet and a greater number of genes were differentially expressed for Sicala 45, thereby indicating a higher level of heat stress and a greater requirement for mobilisation of protective and compensatory mechanisms compared with Sicot 53. Cultivar specific thermotolerance determination using gene profiling may be a useful tool for understanding the underlying basis of physiological and biochemical responses to high temperature stress in the growth cabinet. There is future opportunity for profiling genes associated with heat stress and heat tolerance for identification of key genes associated with superior cultivar performance under high temperature stress and characterisation of these genes under field conditions. This research has identified cultivar differences in yield under field conditions and has identified multiple physiological and biochemical pathways that may contribute to these differences. Future characterisation of genes associated with heat stress and heat tolerance under growth cabinet conditions may be extended to field conditions, thus providing the underlying basis of the response of cotton to high temperature stress. Electron transport rate and relative electrical conductivity were found to be rapid and reliable determinants of cultivar specific thermotolerance and hence may be extended to broad-spectrum screening of a range of cotton cultivars and species and under a range of abiotic stress. This will enable the identification of superior cotton cultivars for incorporation into local breeding programs for Australian and American cotton production systems.
204

Thermotolerance of cotton

Cottee, Nicola Sandra January 2009 (has links)
Doctor of Philosophy (PhD) / The Australian cotton industry has developed high yielding and high quality fibre production systems and attributes a significant contribution of this achievement to highly innovative breeding programs, specifically focused on the production of premium quality lint for the export market. Breeding programs have recently shifted attention to the development of new germplasm with superior stress tolerance to minimise yield losses attributed to adverse environmental conditions and inputs such as irrigation, fertilisers and pesticides. Various contributors to yield, such as physiology, biochemistry and gene expression have been implemented as screening tools for tolerance to high temperatures under growth cabinet and laboratory conditions but there has been little extension of these mechanisms to field based systems. This study evaluates tools for the identification of specific genotypic thermotolerance under field conditions using a multi-level ‘top down’ approach from crop to gene level. Field experiments were conducted in seasons 1 (2006) and 3 (2007) at Narrabri (Australia) and season 2 (2006) in Texas (The United States of America) and were supplemented by growth cabinet experiments to quantify cultivar differences in yield, physiology, biochemical function and gene expression under high temperatures. Whole plants were subjected to high temperatures in the field through the construction of Solarweave® tents and in the growth cabinet at a temperature of 42 oC. The effectiveness of these methods was then evaluated to establish a rapid and reliable screening tool for genotype specific thermotolerance that could potentially improve the efficiency of breeding programs and aid the development to high yielding cultivars for hot growing regions. Cotton cultivars Sicot 53 and Sicala 45 were evaluated for thermotolerance using crop level measurements (yield and fibre quality) and whole plant measurements (fruit retention) to determine the efficacy of these measurements as screening tools for thermotolerance under field conditions. Sicot 53 was selected as a relatively thermotolerant cultivar whereas Sicala 45 was selected as a cultivar with a lower relative thermotolerance and this assumption was made on the basis of yield in hot and cool environments under the CSIRO Australian cotton breeding program. Yield and fruit retention were lower under tents compared with ambient conditions in all 3 seasons. Yield and fruit retention were highly correlated in season 1 and were higher for Sicot 53 compared to Sicala 45 suggesting that fruit retention is a primary limitation to yield in a hot season. Thus yield and fruit retention are good indicators of thermotolerance in a hot season. Temperature treatment and cultivar differences were determined for fibre quality in seasons 1 and 3; however, quality exceeded the industry minimum thereby indicating that fibre quality is not a good determinant of thermotolerance. Physiological determinants of plant functionality such as photosynthesis, electron transport rate, stomatal conductance and transpiration rate were determined for cultivars Sicot 53 and Sicala 45 under the tents and an index of these parameters was also analysed to determine overall plant physiological capacity in the field. Physiological capacity was also determined under high temperatures in the growth cabinet using a light response curve at various levels of photosynthetically active radiation (PAR). Photosynthesis and electron transport rate decreased, whilst stomatal conductance and transpiration rate increased under the tents as well as under high temperatures in the growth cabinet. Photosynthesis and electron transport rate were higher for Sicot 53 but stomatal conductance and transpiration rate were higher for Sicala 45 under the tents. No cultivar differentiation was evident for plants grown under high temperatures in the growth cabinet. Temperature treatment and cultivar differences in physiological function were greater in a hot year (season 1), thereby indicating the importance of cultivar selection for thermotolerance in the presence of stress. Electron transport rate was correlated with yield in season 1, thus suggesting the suitability of this method for broad genotypic screening for thermotolerance under field conditions. Biochemical processes such as membrane integrity and enzyme viability were used to determine cultivar specific thermotolerance under high temperature stress in the laboratory, field and growth cabinet. Electrolyte leakage is an indicator of decreased membrane integrity and may be estimated by the relative electrical conductivity or relative cellular injury assays. The heat sensitivity of dehydrogenase activity, a proxy for cytochrome functionality and capacity for mitochondrial electron transport, may be quantified spectrophotometrically. Cellular membrane integrity and enzyme viability decreased sigmoidally with exposure to increasing temperatures in a water bath. Membrane integrity was higher for Sicot 53 compared with Sicala 45 under the tents and under high temperatures in the growth cabinet. No temperature treatment or cultivar differences were found for enzyme viability under the tents; however, enzyme viability for Sicala 45 was higher in the growth cabinet compared with Sicot 53. Relative electrical conductivity was strongly correlated with yield under ambient field conditions and under the tents, suggesting impairment of electron flow through photosynthetic and/or respiratory pathways, thus contributing to lower potential for ATP production and energy generation for yield contribution. Thus, the membrane integrity assay was considered to be a rapid and reliable tool for thermotolerance screening in cotton cultivars. Gene expression was examined for cultivars Sicot 53 and Sicala 45 grown under high (42 oC) temperatures in the growth cabinet. Rubisco activase expression was quantified using quantitative real-time polymerase chain reaction analysis and was decreased under high temperatures and was lower for Sicala 45 than Sicot 53. Maximum cultivar differentiation was found after 1.0 h exposure to high temperatures and hence, leaf tissue sampled from this time point was further analysed for global gene profiling using cDNA microarrays. Genes involved in metabolism, heat shock protein generation, electron flow and ATP generation were down-regulated under high temperatures in the growth cabinet and a greater number of genes were differentially expressed for Sicala 45, thereby indicating a higher level of heat stress and a greater requirement for mobilisation of protective and compensatory mechanisms compared with Sicot 53. Cultivar specific thermotolerance determination using gene profiling may be a useful tool for understanding the underlying basis of physiological and biochemical responses to high temperature stress in the growth cabinet. There is future opportunity for profiling genes associated with heat stress and heat tolerance for identification of key genes associated with superior cultivar performance under high temperature stress and characterisation of these genes under field conditions. This research has identified cultivar differences in yield under field conditions and has identified multiple physiological and biochemical pathways that may contribute to these differences. Future characterisation of genes associated with heat stress and heat tolerance under growth cabinet conditions may be extended to field conditions, thus providing the underlying basis of the response of cotton to high temperature stress. Electron transport rate and relative electrical conductivity were found to be rapid and reliable determinants of cultivar specific thermotolerance and hence may be extended to broad-spectrum screening of a range of cotton cultivars and species and under a range of abiotic stress. This will enable the identification of superior cotton cultivars for incorporation into local breeding programs for Australian and American cotton production systems.
205

Avaliação fisiológica da aroeira (Schinus terebinthifolius Raddi) sob déficit hídrico com vista para o reflorestamento

SILVA, Maria Alice Vasconcelos da 30 August 2007 (has links)
Submitted by (lucia.rodrigues@ufrpe.br) on 2016-08-31T10:53:10Z No. of bitstreams: 1 Maria Alice Vasconcelos da Silva (1).pdf: 762537 bytes, checksum: c100c2c556639aa3d440082da1ef7bb5 (MD5) / Made available in DSpace on 2016-08-31T10:53:10Z (GMT). No. of bitstreams: 1 Maria Alice Vasconcelos da Silva (1).pdf: 762537 bytes, checksum: c100c2c556639aa3d440082da1ef7bb5 (MD5) Previous issue date: 2007-08-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work aimed to study the effect of water deficit on gas exchange, leaf water potential, dry matter production, and some biochemical aspects of Schinus terebinthifolius Raddi. young plants. A research project was developed, under greenhouse conditions, at the Laboratório de Fisiologia Vegetal, Departamento of Biologia of Universidade Rural de Pernambuco between November, 2005 to February, 2006. Seedlings with 3 month-old and sexually propagated were cultivated in containers containing 5.5 kg of soil. The entirely randomized experimental design was used, with four water treatments (100%, 75%, 50% and 25% to field capacity-FC), with four replicates. Plants under 25% FC were re-watered to 100% FC once after stomatal closure. After 15 days of acclimation period have started the water treatments. The experimental period lasted for 74 days. Transpiration (E), diffusive resistance (Rs), leaf temperature (Tfol), air temperature (Tar), relative humidity of the air (UR), photosynthetically active radiation (PAR), and vapor pressure deficit (VPD) were evaluated at midday each seven days. At the end of the experimental period, leaf water potential (Yf) was measured at midday. Leaves (LDM), stems (SDM), roots (RDM), and total dry masses (TDM), root to shoot ratio (R/Sh), and leaves (LBA), stems (SBA) and roots biomass allocation (RBA) were determined. In addition, carbohydrates, free proline, soluble protein and free amino acids contents were analyzed. In plants under 25% field capacity, stomatal closure was observed after 11 days of water treatments. At the time plants were re-watered to 100% FC. After 24 h plants re-watered recovered the stomatal aperture, which remained open until the end of the experimental period. Water deficit decreased the leaf water potential (Yf) in plants grown at 25% FC (-2.2 MPa) when compared with the 100% FC treatment (-1.1 MPa). Plants grown under 75% FC producted higher LDM, SDM and RDM than the other treatments. Differences among treatments to biomass allocation were not observed, but there was a tendency to plants grown under 25% of FC to increase more biomass allocation than the other treatments. The water stress reduced carbohydrates contents and increased soluble protein and amino acids. However, differences to proline content were not verified among water treatments. These results suggest that this species is tolerate to low humidity levels in the soil and that the level of 75% of FC is the best to cultivate it in the initial fase of development. / Com o objetivo de estudar os efeitos do déficit hídrico sobre as trocas gasosas, o potencial hídrico foliar, a produção de matéria seca e alguns aspectos bioquímicos de plantas jovens de Schinus terebinthifolius Raddi, foi desenvolvido um trabalho em casa de vegetação do Laboratório de Fisiologia Vegetal do Departamento de Biologia da Universidade Federal Rural de Pernambuco, no período de novembro de 2005 a fevereiro de 2006. Utilizaram-se mudas com três meses de idade, propagadas sexuadamente, as quais foram transferidas para vasos de polietileno contendo 5,5 kg de solo. Adotou-se um delineamento experimental inteiramente casualizado, representado por quatro tratamentos hídricos (100% da Capacidade de pote; 75% CP; 50% CP; 25% CP) com quatro repetições. Após 15 dias sob aclimatação, procedeu-se o início dos tratamentos hídricos. Durante o período experimental foram efetuadas medições das trocas gasosas do vapor d’água às 12 horas em intervalos de 7 dias. Avaliou-se a transpiração (E), a resistência difusiva (Rs), a temperatura foliar (Tf), a temperatura do ar (Tar), a umidade relativa do ar (UR), a radiação fotossinteticamente ativa (RFA) e o déficit de pressão de vapor (DPV). No final do período experimental foi mensurado o potencial de água da folha (Yf) às 12 horas e determinado o peso da matéria seca das folhas (MSF), dos caules (MSC), das raízes (MSR), a matéria seca total (MST), a relação raiz/parte aérea (R/Pa) e a alocação de biomassa para as folhas (ABF), caules (ABC) e para as raízes (ABR). Além disso, foram analisados os teores de carboidratos, de prolina livre, proteínas solúveis e aminoácidos livres. O fechamento estomático ocorreu em plantas submetidas a 25% CP, aos 11 dias após a diferenciação dos tratamentos hídricos quando as plantas foram reirrigadas para 100% CP. Após 24 horas houve recuperação da abertura estomática mantendo-se até o final do experimento. O déficit hídrico reduziu o potencial hídrico foliar (Yf) nas plantas do tratamento estresse moderado (–2,2 MPa) quando comparado com o controle (-1,1 MPa). As plantas do tratamento 75% CP se destacaram em relação aos demais tratamentos, por produzirem mais matéria seca para as folhas (MSF), caule (MSC) e raízes (MSR). Com relação à alocação de biomassa, não houve diferença significativa entre os tratamentos, porém houve uma tendência do tratamento 25% CP alocar mais biomassa para do que os demais tratamentos. Em relação aos solutos orgânicos, o déficit hídrico provocou reduções nos teores de carboidratos e aumento no teor de proteínas e aminoácidos, não havendo diferença entre os tratamentos para os teores de prolina. Os resultados sugerem que a aroeira é tolerante a baixos níveis de umidade no solo e que o nível de 75%CP é o mais indicado para o cultivo desta espécie na fase de muda.
206

Comportamento ecofisiologico de clones de Eucalyptus / Ecophysiological behavior of Eucalyptus clones

Tonello, Kelly Cristina 15 August 2018 (has links)
Orientador: Jose Teixeira Filho / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola / Made available in DSpace on 2018-08-15T15:44:54Z (GMT). No. of bitstreams: 1 Tonello_KellyCristina_D.pdf: 3209931 bytes, checksum: ad807b85c48d80b43bb9c5e89fb27160 (MD5) Previous issue date: 2010 / Resumo: O crescimento e o desenvolvimento dos vegetais é conseqüência de vários processos fisiológicos controlados pelas condições ambientais e características genéticas de cada espécie vegetal. Este estudo teve por objetivo caracterizar o comportamento ecofisiológico da transpiração (E) e condutância estomática (Gs) de dois clones de Eucalyptus grandis x Eucalyptus urophylla (C041 e P4295) sob diferentes condições de disponibilidade hídrica no solo e em função de variáveis ambientais como radiação global (Rg), radiação fotossinteticamente ativa (Qleaf) e déficit de pressão de vapor da atmosfera (DPV). As aferições foram realizadas ao longo do período de fevereiro de 2007 a agosto de 2008 em três escalas de estudo designadas como vaso, parcela e bacia hidrográfica. Medidas de potencial hídrico antemanhã (?pd) foram realizadas para o acompanhamento das disponibilidades hídricas no solo. Após o conhecimento do comportamento ecofisiológico dos clones em função das variáveis ambientais e ?pd, buscou-se relacionar as respostas obtidas na escala vaso com as escalas parcela e bacia hidrográfica por meio de modelos ecofisiológicos desenvolvidos para a mudança de escala ao nível de folha. De acordo com os resultados, as variáveis ecofisiológicas estiveram diretamente associadas às variáveis ambientais e ao ?pd tanto para o clone C041 quanto para o clone P4295. Foram observados entre os clones comportamentos ecofisiológicos distintos quando associados à Qleaf, DPV e ?pd. Os clones apresentaram-se diferentes na amplitude de resposta de E e Gs em função de Qleaf e DPV entre as escalas, porém, observou-se a mesma tendência de comportamento, com exceção da relação Gs x DPV para o clone C041, entre escala vaso e parcela/bacia hidrográfica. Os modelos propostos para a mudança de escala de folha para folha mostraram-se satisfatórios, principalmente nas relações envolvendo a radiação fotossinteticamente ativa. Contudo, não apresentaram bons resultados para a extrapolação das respostas ecofisiológicas de Gs em função do DPV / Abstract: The growth and development of plants is a consequence of several physiological processes controlled by environmental conditions and genetic characteristics of each plant species. This study aimed to characterize the ecophysiological behavior of transpiration (E) and stomatal conductance (Gs) of two clones of Eucalyptus grandis x urophylla (C041 and P4295) under different soil water conditions and according to environmental variables such as global radiation (Rg), photosynthetic active radiation (Qleaf) and a vapor pressure deficit of the atmosphere (VPD). The measurements were performed during the period February 2007 to August 2008 on three scales of study designated as a pot, plot and watershed. Predawn leaf water potential (?pd) measurements were performed to monitor water availability in the soil. After the knowledge of the ecophysiological behavior of the clones on the basis of environmental variables and ?pd, sought to link the responses obtained in the pots scale with pot and watershed through ecophysiological models developed for scaling up leaf from leaf. According to the results, the ecophysiological behavior were directly associated with environmental variables and the ?pd both to the C041 as for P4295. Were observed among different clones ecophysiological behavior when associated with Qleaf, VPD and ?pd. The clones were different in amplitude of E and Gs as function of Qleaf and VPD between the scales, however, showed the same pattern of behavior, except for Gs x VPD for clone C041 between pot and plot / watershed scale. The proposed models for the scaling up from leaf to leaf were satisfactory, especially in relationships involving the Qleaf. However, they not provided good results for the extrapolation of ecophysiological responses of Gs as a function of VPD / Doutorado / Agua e Solo / Doutor em Engenharia Agrícola
207

Modélisation statistique et dynamique de la composition de la graine de tournesol (Helianthus annuus L.) sous l’influence de facteurs agronomiques et environnementaux / Statistical and dynamic modeling of sunflower (Helianthus annuus L.) grain composition under agronomic and environmental factors effects

Andrianasolo, Fety Nambinina 14 November 2014 (has links)
Pour répondre à la demande mondiale croissante en huile et en protéines, le tournesol apparaît comme une culture très compétitive grâce à la diversification de ses débouchés et son attractivité environnementale et nutritionnelle. Pourtant, les teneurs en huile et protéines sont soumises à des effets génotypiques et environnementaux qui les rendent fluctuantes et difficilement prédictibles. Nous argumentons qu’une meilleure connaissance des effets les plus importants et leurs interactions devrait permettre de mieux prédire ces teneurs. Deux approches de modélisation ont été développées. Dans la première, trois modèles statistiques ont été construits puis comparés à un modèle simple existant. L’approche dynamique est basée sur l’analyse des relations source-puits au champ et en serre (2011 et 2012) pendant le remplissage. Les performances et domaines de validité des deux types de modélisation sont comparés. / Considering the growing global demand for oil and protein, sunflower appears as a highly competitive crop, thanks to the diversification of its markets and environmental attractiveness and health. Yet the protein and oil contents are submitted to genotypic and environmental effects that make them fluctuating and hardly predictable. We argue that a better knowledge of most important effects and their interactions should permit to improve prediction. Two modeling approaches are proposed: statistical one, where we compared three types of statistical models with a simple existing one. The dynamic approach is based on source-sink relationships analysis (field and greenhouse experiments in 2011 and 2012) during grain filling. Performances of both modeling types and their validity domain are compared.
208

Influence of soil water management on plant growth, essential oil yield and oil composition of rose-scented geranium (Pelargonium spp.)

Eiasu, B.K. (Bahlebi Kibreab) 17 October 2009 (has links)
Introducing effective irrigation management in arid and semi-arid regions, like most areas of South Africa, is an indispensable way of maximising crop yield and enhancing productivity of scarce freshwater resources. Holistic improvements in agricultural water management could be realised through integrating the knowledge of crop-specific water requirements. In order to develop effective irrigation schedules for rose-scented geranium (Pelargonium capitatum x P. radens), greenhouse and field experiments were conducted at the Hatfield Experimental Farm of the University of Pretoria, Pretoria, South Africa, from 28 October 2004 to 2006. Results from 20, 40, 60 and 80% maximum allowable depletion (MAD) levels of the plant available soil water (ASW) indicated that plant roots extracted most of the soil water from the top 40 cm soil layer, independent of the treatment. Both essential oil yield and fresh herbage mass responded positively to high soil water content. Increasing the MAD level to 60% and higher resulted in a significant reduction in herbage mass and essential oil yields. An increase in the degree of water stress apparently increased the essential oil concentration (percentage oil on fresh herbage mass basis), but its contribution to total essential oil yield (kg/ha oil) was limited. There was no significant relationship between MAD level and essential oil composition. For water saving without a significant reduction in essential oil yield of rose-scented geranium, a MAD of 40% of ASW is proposed. Response of rose-scented geranium to a one-month irrigation withholding period in the second or third month of regrowth cycles showed that herbage mass and oil yield were positively related. Herbage yield was significantly reduced when the water stress period was imposed during the third or fourth month of regrowth. A remarkable essential oil yield loss was observed only when the plants were stressed during the fourth month of regrowth. Essential oil content (% oil on fresh herbage mass basis) was higher in stressed plants, especially when stressed late, but oil yield dropped due to lower herbage mass. The relationship between essential oil composition and irrigation treatments was not consistent. Water-use efficiency was not significantly affected by withholding irrigation in the second or in the third month of regrowth. With a marginal oil yield loss, about 330 to 460 m3 of water per hectare per regrowth cycle could be saved by withholding irrigation during the third month of regrowth. The overall results highlighted that in water-scarce regions withholding irrigation during either the second or the third month of regrowth in rose-scented geranium could save water that could be used by other sectors of society. In greenhouse pot experiments, rose-scented geranium was grown under different irrigation frequencies, in two growth media. Irrigation was withheld on 50% of the plants (in each plot) for the week prior to harvesting. Herbage and essential oil yields were better in the sandy clay soil than in silica sand. Essential oil content (% oil on fresh herbage mass basis) apparently increased with a decrease in irrigation frequency. Both herbage and total essential oil yields positively responded to frequent irrigation. A one-week stress period prior to harvesting significantly increased essential oil content and total essential oil yield. Hence, the highest essential oil yield was obtained from a combination of high irrigation frequency and a one-week irrigation-withholding period. In the irrigation frequency treatments, citronellol and citronellyl formate contents tended to increase with an increase in the stress level, but the reverse was true for geraniol and geranyl formate. Leaf physiological data were recorded during the terminal one-week water stress in the glasshouse pot trial. Upon rewatering, stomatal conductance (Gs) and transpiration rate (Rt) were significantly lower in the less often irrigated than in the more often irrigated treatments, while leaf water potential (yw) and relative water content (RWC) were the same for all plants, indicating that water stress had an after-effect on Gs and Rt. At the end of the stress period, Gs, Rt, yw and RWC were lower in the plants from the more often irrigated than from the less often irrigated treatments. Irrespective of irrigation treatment, one type of non-glandular and two types (different in shape and size) of glandular trichomes were observed. In water stressed-conditions, stomata and trichome densities increased, while the total number of stomata and trichomes per leaf appeared to remain more or less the same. Water stress conditions resulted in stomatal closure. / Thesis (PhD)--University of Pretoria, 2009. / Plant Production and Soil Science / unrestricted
209

Water Fluxes in Soil-Pavement Systems: Integrating Trees, Soils and Infrastructure

de la Mota Daniel, Francisco Javier 31 January 2019 (has links)
In urban areas, trees are often planted in bare soil sidewalk openings (tree pits) which recently are being covered with permeable pavements. Pavements are known to alter soil moisture and temperature, and may have implications for tree growth, root development and depth, drought resilience, and sidewalk lifting. Furthermore, tree pits are often the only unsealed soil surface and are important for water exchange between soil and atmosphere. Therefore, covering tree pits with pavement, even permeable, may have implications for the urban water balance and stormwater management. A better understanding of permeable pavement on tree pavement soil system functioning can inform improved tree pit and street design for greater sustainability of urban environments. We conducted experiments at two sites in Virginia, USA (Mountains and Coastal Plain) with different climate and soil. At each location, we constructed 24 tree pits in a completely randomized experiment with two factors: paved with resin-bound porous-permeable pavement versus unpaved, and planted with Platanus x acerifolia 'Bloodgood' versus unplanted (n = 6). We measured tree stem diameter, root growth and depth, and soil water content and temperature over two growing seasons. We also monitored tree sap flow one week in June 2017 at the Mountains. In addition, we calibrated and validated a soil water flow model, HYDRUS-1D, to predict soil water distribution for different rooting depths, soil textures and pavement thicknesses. Trees in paved tree pits grew larger, with stem diameters 29% (Mountains) and 51% (Coastal Plain) greater. Roots developed faster under pavement, possibly due to the increased soil water content and the extended root growing season (14 more days). Tree transpiration was 33% of unpaved and planted pit water outputs, while it was 64% for paved and planted pits. In June 2016, planted pits had decreased root-zone water storage, while unplanted pits showed increased storage. A water balance of the entire experimental site showed overall decreased soil water storage due to tree water extraction becoming the dominant factor. HYDRUS-1D provided overall best results for model validation at 10 cm depth from soil surface (NSE = 0.447 for planted and paved tree pits), compared to 30- and 60 cm depths. HYDRUS-1D simulations with greater pavement thickness resulted in changes in predicted soil water content at the Coastal Plain, with higher values at 10- and 30-cm depths, but lower values at 60-cm depth. At the Mountains, virtually no difference was observed, possibly due to different soil texture (sandy vs clayey). Tree pits with permeable pavement accelerated tree establishment, but promoted shallower roots, possibly increasing root-pavement conflicts and tree drought susceptibility. Paved tree pits resulted in larger trees, increasing tree transpiration, but reduced soil evaporation compared to unpaved pits. Larger bare soil pits surrounded by permeable pavement might yield the best results to improve urban stormwater retention. Also, HYDRUS 1D was successful at simulating soil water content at 10-cm depth and may be valuable to inform streetscape design and planning. / PHD / Trees in cities are often planted in pavement cutouts (tree pits) that are usually the only available area for water exchange between soil and atmosphere. Tree pits are typically covered with a variety of materials, including permeable pavement. Pavements are known to modify soil water distribution and temperature, affecting tree growth, rooting depth, drought resilience, and sidewalk lifting. A better understanding of this system can inform tree pit and street design for greater sustainability. We constructed 24 tree pits at each of two regions in Virginia, USA (Mountains and Coastal Plain). These tree pits were paved with permeable pavement or unpaved, and planted with London Plane or unplanted. We measured stem diameter, root growth, and soil water content and temperature over two years and tree sap flow for one week in summer (Mountains only). We also used a soil water flow model, HYDRUS-1D, to predict water distribution for different rooting depths, soil textures and pavement thicknesses. After the first growing season trees in pavement were larger, with stem diameters 29% (Mountains) and 51% (Coastal Plain) greater. Roots developed faster under pavement, possibly due to increased soil water content and a 14-day increase in root growing season. Also, in June 2017, tree transpiration was 33% of unpaved-and-planted pit water outputs, and 64% of paved-and-planted pits. In June 2016, root-zone water storage decreased in planted pits but increased in unplanted pits. When considering the entire experimental site, soil water storage decreased, with tree water extraction being the dominant factor. HYDRUS-1D performed better at 10-cm soil depth than at 30- and 60-cm depths. At the Coastal Plain, HYDRUS-1D predicted higher soil water content at 10- and 30-cm depths with increased pavement thickness, but lower values at 60-cm depth. At the Mountains, there was no effect, possibly due to higher clay content. Permeable pavement accelerated tree establishment, but promoted shallower roots, increasing drought susceptibility and risk for root-pavement conflicts. Pavement resulted in larger trees and greater transpiration, but reduced soil evaporation. Larger bare-soil pits surrounded by permeable pavement might optimize stormwater retention.
210

Variability in tree-water relations from tree-line to tree-line in Canada's western boreal forest

Perron, Nia Sigrun 08 1900 (has links)
Dans la forêt boréale, les températures augmentent et les régimes de précipitations changent, ce qui entraîne une augmentation de l'intensité et de la fréquence des conditions de sécheresse. Ces changements devraient se poursuivre et avoir des effets complexes et variables sur la végétation de la forêt boréale, notamment la modification de la composition due à la sécheresse, la mortalité des arbres et la disparition des forêts. L'objectif de cette thèse était de fournir une meilleure compréhension fonctionnelle des relations arbre-eau pour deux espèces d'arbres boréales communes et co-occurrentes (l’épinette noire; Picea mariana et le mélèze laricin; Larix laricina) à travers la forêt boréale de l'ouest du Canada. Pour ce faire, j’ai étudié comment les différents éléments de l'hydraulique des arbres, y compris la transpiration, et le déficit hydrique, étaient affectés par les conditions locales (structure du peuplement, conditions édaphiques et type de couverture terrestre), les stratégies fonctionnelles des arbres (caractéristiques structurelles et foliaires) et/ou les conditions climatiques (déficit de pression de vapeur, rayonnement, température de l'air, pluie et évapotranspiration). J'ai déterminé que l'utilisation acquisitive des ressources se traduisait par une productivité plus élevée chez le mélèze laricin, lorsque la disponibilité en eau était élevée, que les nutriments n'étaient pas limités et que la concurrence pour la lumière était favorable. L'épinette noire, en revanche, avait une acquisition lente des ressources, privilégiant la conservation de l'eau par rapport à la croissance radiale. J'ai déterminé que la transpiration de l'épinette noire et du mélèze laricin était influencée par l'hétérogénéité du site dans un complexe de tourbières boréales boisées, entraînant une variabilité de la contribution de la transpiration à l’échelle de l’évapotranspiration de l'écosystème. J’ai associé des variables environnementales au déficit hydrique des arbres au niveau de l'espèce afin de déterminer les facteurs de stress hydrique chez l'épinette noire et le mélèze laricin sur cinq sites de la limite sud à la limite nord de la forêt boréale. J'ai determiné que le déficit hydrique quotidien des arbres était contrôlé par la transpiration, tandis que les périodes plus longues (jours à semaines) de stress dû à la sécheresse étaient contrôlées par le rayonnement solaire et la disponibilité de l'eau, et étaient coordonnées avec les flux d'évapotranspiration à l’échelle du peuplement. Il est important de comprendre les relations hydriques des espèces d'arbres dans le biome boréal occidental du Canada, car la disponibilité en eau devrait devenir de plus en plus limitée dans cette région. Malgré des stratégies différentes selon les espèces pour faire face aux conditions actuelles de la forêt boréale, il existe des incertitudes quant à la résilience des arbres face aux changements environnementaux prévus. La poursuite des travaux visant à quantifier les réponses des espèces d'arbres communes et répandues à des conditions progressivement limitées en eau aidera à comprendre la résilience des forêts boréales face aux changements environnementaux rapides et à maintenir leurs services écosystémiques liés à la régulation du climat, à la séquestration du carbone, à l'habitat de la faune et de la flore, à la culture et à l'économie. / In the boreal forest, air temperatures are increasing, and precipitation regimes are changing, leading to amplified intensity and frequency of drought conditions. Changes are projected to continue, resulting in complex and variable effects on boreal forest vegetation including drought-induced forest compositional changes, tree mortality and, in some places, forest loss. The objective l of this work was to provide an improved functional understanding of tree-water relationships for two common and co-occurring boreal tree species (black spruce; Picea mariana and tamarack; Larix laricina) across Canada’s western boreal forest. To achieve this objective, I explored how different elements of tree-water relations, including transpiration, and tree water deficit were affected by local conditions (stand structure, edaphic conditions, and land cover type), tree functional strategies (structural and foliar traits), and/or meteorological conditions (vapor pressure deficit, radiation, air temperature, rain, and evapotranspiration). In Chapter 2, I explored the coordination between resource-use strategies of tamarack and black spruce, and found that acquisitive resource-use resulted in higher productivity in tamarack, when water availability was high, nutrients were not limited and competition for light was favourable. Black spruce, by contrast, had slow resource acquisition, prioritizing water conservation over radial growth. Next, in Chapter 3, I determined that transpiration of black spruce and tamarack were influenced by site heterogeneity across a forested boreal peatland complex, leading to variability in the contribution of stand-level transpiration to ecosystem evapotranspiration. Finally, in Chapter 4, I paired environmental variables with species-level tree water deficit to determine the drivers of water-stress in black spruce and tamarack across five sites spanning the extent of the boreal biome in western North America from the southern to northern boreal tree-line. I determined that daily tree water deficit was controlled by transpiration, while longer periods (days to weeks) of drought stress were controlled by solar radiation and water availability. Both short and long periods of tree water deficit caused greater stand-level fluxes of evapotranspiration. Understanding water relations of tree species in Canada’s western boreal biome is of utmost importance as water availability is projected to become increasingly limited in this region. Although tree species have different strategies to cope with current conditions in the boreal forest, there is uncertainty regarding the resilience of black spruce and tamarack to projected environmental changes. Continued work to quantify the responses of common and widespread tree species to progressively water-limited conditions will help to understand the resilience of boreal forests in the face of rapid environmental change, and to maintain their ecosystem services related to climate regulation, carbon sequestration, wildlife habitat, culture and economy.

Page generated in 0.1294 seconds