31 |
Potential applications of intelligent transport systems in urban freight transportLuk, Yiu-wah, Everett., 陸耀華. January 2004 (has links)
published_or_final_version / abstract / toc / Transport Policy and Planning / Master / Master of Arts in Transport Policy and Planning
|
32 |
Multimodal transportation systems analysis to characterize petroleum-related freight flowsReimer, Mark January 2014 (has links)
The purpose of this research is to inform planning, engineering, and management decisions concerning transportation systems that serve the petroleum exploration and production industry in North America. The research applies the transportation systems analysis approach to characterize the petroleum activity system and transportation system in southwest Manitoba and to develop freight flows. The research develops a framework to estimate and assign petroleum-related truck traffic to the regional highway network taking into account the variability of the industry. This is done by integrating components of freight demand modeling and truck traffic monitoring processes to improve understanding of truck traffic flow characteristics related to the industry. The results of the research are presented in an interactive mapping data dissemination tool. The approach and methodologies of this research are transferable to other jurisdictions and can be used to address the needs of other industry-specific developments.
|
33 |
Development of a hardware-in-the-loop analysis framework for advanced ITS applicationsRoe, Matthew Stephen 08 April 2009 (has links)
As Intelligent Transportation Systems (ITS) become more prevalent, there is a need for a system capable of the rigorous evaluation of new ITS strategies for a wide variety of applications. Pre-deployment testing and fine-tuning of the system, performance evaluation, and alternatives analysis are all potential benefits that could be gained through the evaluation of ITS. Simulation, an increasingly popular tool for transportation analysis, would seem an ideal solution to this problem as it allows for the consideration of many scenarios that may be improbable or impossible to observe in the field. Also, simulation provides a framework that allows for the application of rigorous analysis techniques to the output data, providing an accurate and statistically significant conclusion.
The difficulty is that many ITS strategies are difficult or impossible to implement in a simulated environment. The rapid nature of technology development and the complicated nature of many ITS solutions are difficult to emulate in simulation models. Furthermore, the emulation of a particular ITS solution is not guaranteed to provide the same result that the physical system would, were it subject to the same inputs.
This study seeks to establish a framework for the analysis of advanced ITS applications through the use of Hardware-in-the-Loop Simulation (HILS), which provides a procedure for interfacing simulation models with real-world hardware to conduct analysis. This solution provides the benefits of both advanced ITS evaluation and simulation for powerful and accurate analysis. A framework is established that includes all the steps of the modeling process including construction, validation, calibration, and output analysis. This ensures that the process surrounding the HILS implementation is valid so that the results of the evaluation are accurate and defendable.
Finally, a case study of the application of the developed framework to the evaluation, a real-world implementation of an advanced ITS application (SCATS in this case) is considered. The effectiveness of the framework in creating and evaluating a corridor using a simulation model wed to real-world hardware is shown. The results of the analysis show the power of this method when correctly applied and demonstrate where further analysis could expand upon the proposed procedure.
|
34 |
Evaluation of an image processing algorithm for scene change detectionFlores, Daniel, January 2008 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2008. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
|
35 |
Extension and generalization of Newell's simplified theory of kinematic wavesNi, Daiheng. January 2004 (has links) (PDF)
Thesis (Ph. D.)--Civil and Environmental Engineering, Georgia Institute of Technology, 2005. / Leonard, John D., Committee Chair ; Goldsman, Dave, Committee Member ; Amekudzi, Adjo, Committee Member ; Hunter, Michael, Committee Member ; Dixon, Karen, Committee Member. Vita. Includes bibliographical references.
|
36 |
A Novel Semantic Feature Fusion-based Pedestrian Detection System to Support Autonomous VehiclesSha, Mingzhi 27 May 2021 (has links)
Intelligent transportation systems (ITS) have become a popular method to enhance the safety and efficiency of transportation. Pedestrians, as an essential participant of ITS, are very vulnerable in a traffic collision, compared with the passengers inside the vehicle. In order to protect the safety of all traffic participants and enhance transportation efficiency, the novel autonomous vehicles are required to detect pedestrians accurately and timely.
In the area of pedestrian detection, deep learning-based pedestrian detection methods have gained significant development since the appearance of powerful GPUs. A large number of researchers are paying efforts to improve the accuracy of pedestrian detection by utilizing the Convolutional Neural Network (CNN)-based detectors.
In this thesis, we propose a one-stage anchor-free pedestrian detector named Bi-Center Network (BCNet), which is aided by the semantic features of pedestrians' visible parts. The framework of our BCNet has two main modules: the feature extraction module produces the concatenated feature maps that extracted from different layers of ResNet, and the four parallel branches in the detection module produce the full body center keypoint heatmap, visible part center keypoint heatmap, heights, and offsets, respectively. The final bounding boxes are converted from the high response points on the fused center keypoint heatmap and corresponding predicted heights and offsets.
The fused center keypoint heatmap contains the semantic feature fusion of the full body and the visible part of each pedestrian. Thus, we conduct ablation studies and discover the efficiency of feature fusion and how visibility features benefit the detector's performance by proposing two types of approaches: introducing two weighting hyper-parameters and applying three different attention mechanisms.
Our BCNet gains 9.82% MR-2 (the lower the better) on the Reasonable setup of the CityPersons dataset, compared to baseline model which gains 12.14% MR-2 .
The experimental results indicate that the performance of pedestrian detection could be significantly improved because the visibility semantic could prompt stronger responses on the heatmap. We compare our BCNet with state-of-the-art models on the CityPersons dataset and ETH dataset, which shows that our detector is effective and achieves a promising performance.
|
37 |
An Integrated Architecture for Simulation and Modeling of Small- and Medium-Sized Transportation and Communication NetworksElbery, Ahmed, Rakha, Hesham, Elnainay, Mustafa Y., Hoque, Mohammad A. 01 January 2015 (has links)
The emergence of Vehicular Ad-hoc Networks (VANETs) in the past decade has added a level of complexity to the modelling of Intelligent Transportation System (ITS) applications. In this paper, the Vehicular Network Integrated Simulator (VNetIntSim) is introduced as a new transportation network and VANET simulation tool by integrating transportation and VANET modelling. Specifically, it integrates the OPNET software, a communication network simulator, and the INTEGRATION software, a microscopic traffic simulation software. The INTEGRATION software simulates the movement of travellers and vehicles, while the OPNET software models the data exchange through the communication system. Information is exchanged between the two simulators as needed. The paper describes the implementation and the operation details of the VNetIntSim as well as the features it supports such as multiclass support and vehicle reuse. Subsequently, VNetIntSim is used to quantify the impact of mobility parameters (vehicular traffic stream speed and density) on the communication system performance considering Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) applications. Specifically, the routing performance (packet drops and route discovery time), IP processing delay in case of a file transfer protocol (FTP) application, and jitter in case of a Voice over Internet Protocol (VoIP) application and evaluated.
|
38 |
Modeling Automated Highway System Guideway OperationsSiess, Eric Joseph 04 February 1998 (has links)
The purpose of this research is to explore the operational characteristics of a Maglev-based Automated Highway System and how it would interact with freeway operations. The extension of traditional traffic flow phenomenon, including weaving, merging, and stopping distance, into the automated system is looked at. These are also extended into platoon operations and their effect on such properties as gap control and ultimately the capacity of such a system. The ability to incorporate an AHS system into the existing Interstate Highway System is investigated. This includes placing the magways in the right-of-way of the highway system and interfacing the AHS with the existing freeways. A model is developed and run to simulate the assignment of traffic between the freeway and the guideway links. Both operational concepts of user equilibrium and system optimal conditions are explored, and equations are found to estimate the amount of traffic which can be found on the links based on the total traffic volume. / Master of Science
|
39 |
Sensor-based Computing Techniques For Real-time Traffic Evacuation ManagementHamza-Lup, Georgiana 01 January 2006 (has links)
The threat of terrorist incidents is higher than ever before and devastating acts, such as the terrorist attacks on the World Trade Center and the Pentagon, have left many concerns about the possibility of future incidents and their potential impact. Unlike some natural disasters that can be anticipated, terrorist attacks are sudden and unexpected. Even if sometimes we do have partial information about a possible attack, it is generally not known exactly where, when, or how an attack will occur. This lack of information posses great challenges on those responsible for security, specifically, on their ability to respond fast, whenever necessary with flexibility and coordination. The surface transportation system plays a critical role in responding to terrorist attacks or other unpredictable human-caused disasters. In particular, existing Intelligent Transportation Systems (ITS) can be enhanced to improve the ability of the surface transportation system to efficiently respond to emergencies and recover from disasters. This research proposes the development of new information technologies to enhance today's ITS with capabilities to improve the crisis response capabilities of the surface transportation system. The objective of this research is to develop a Smart Traffic Evacuation Management System (STEMS) that responds rapidly and effectively to terrorist threats or other unpredictable disasters, by creating dynamic evacuation plans adaptable to continuously changing traffic conditions based on real-time information. The intellectual merit of this research is that the proposed STEMS will possess capabilities to support both the unexpected and unpredictable aspects of a terrorist attack and the dynamic aspect of the traffic network environment. Studies of related work indicate that STEMS is the first system that automatically generates evacuation plans, given the location and scope of an incident and the current traffic network conditions, and dynamically adjusts the plans based on real-time information received from sensors and other surveillance technologies. Refining the plans to keep them consistent with the current conditions significantly improves evacuation effectiveness. The changes that STEMS can handle range from slow, steady variations in traffic conditions, to more sudden variations caused by secondary accidents or other stochastic factors (e.g., high visibility events that determine a sudden increase in the density of the traffic). Being especially designed to handle evacuation in case of terrorist-caused disasters, STEMS can also handle multiple coordinated attacks targeting some strategic area over a short time frame. These are frequently encountered in terrorist acts as they are intended to create panic and terror. Due to the nature of the proposed work, an important component of this project is the development of a simulation environment to support the design and test of STEMS. Developing analytical patterns for modeling traffic dynamics has been explored in the literature at different levels of resolution and realism. Most of the proposed approaches are either too limited in representing reality, or too complex for handling large networks. The contribution of this work consists of investigating and developing traffic models and evacuation algorithms that overcome both of the above limitations. Two of the greatest impacts of this research in terms of science are as follows. First, the new simulation environment developed for this project provides a test bed to facilitate future work on traffic evacuation systems. Secondly, although the models and algorithms developed for STEMS are targeted towards traffic environments and evacuation, their applicability can be extended to other environments (e.g., building evacuation) and other traffic related problems (e.g., real-time route diversion in case of accidents). One of the broader impacts of this research would be the deployment of STEMS in a real environment. This research provides a fundamental tool for handling emergency evacuation for a full range of unpredictable incidents, regardless of cause, origin and scope. Wider and swifter deployment of STEMS will support Homeland Security in general, and will also enhance the surface transportation system on which so many Homeland Security stakeholders depend.
|
40 |
Dynamic Modeling and Control of a Car-Like RobotMoret, Eric N. 25 March 2003 (has links)
The Flexible Low-cost Automated Scaled Highway (FLASH) laboratory at the Virginia Tech Transportation Institute (VTTI) is one of many facilities dedicated to the field of Intelligent Transportation Systems (ITS). The goal of the FLASH lab is to provide small-scale development and implementation of autonomous control strategies for today's vehicles.
The current controller used on the scale vehicles is based solely on the kinematics of the system. This body of work was aimed to develop a dynamic control law to enhance the performance of the existing kinematic controller. This control system is intended to automatically maintain the vehicle's alignment on the road as well as keep the speed of the vehicle constant. Implementation of such systems could conceivably reduce driver fatigue by removing nearly all the burden of the driving process from the driver while on the highway.
System dynamics of car-like robots with nonholonomic constraints were employed in this research to create a controller for an autonomous path following vehicle. The application of working kinematic and dynamic models describing car-like robotic systems allowed the development of a nonlinear controller.
Simulations of the vehicle and controller were done using MATLAB. Comparisons of the kinematic controller and the dynamic controller presented here were also done. In order to make the simulations model the actual system more closely, measures were taken to approximate actual sensor readings. / Master of Science
|
Page generated in 0.116 seconds