• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultra-broadband GaAs pHEMT MMIC cascode Travelling Wave Amplifier (TWA) design for next generation instrumentation

Shinghal, Priya January 2016 (has links)
Ultra-broadband Monolithic Microwave Integrated Circuit (MMIC) amplifiers find applications in multi-gigabit communication systems for 5G and millimeter wave measurement instrumentation systems. The aim of the research was to achieve maximum bandwidth of operation of the amplifier from the foundry process used and high reverse isolation ( < -25.0 dB) across the whole bandwidth. To achieve this, several design variations of DC - 110 GHzMMIC Cascode TravellingWave Amplifier (TWA) on 100 nm AlGaAs/GaAs pHEMT process were done for application in next generation instrumentation and high data transfer rate (100 Gb/s) optical modulator systems. The foundry service and device models used for the design are of the WINPP10-10 process from WIN Semiconductor Corp., Taiwan, a commercial and highly stable process. The cut-off frequency ft and maximum frequency of oscillation fmax for this process are 135 GHz and 185 GHz respectively. Thus, the design was aimed at pushing the ultimate limits of operation for this process. The design specifications were targeted to have S21 = 9.0 to 10.0 ± 1.0 dB, S11 & S22 ≤ -10.0 dB and S12 ≤ -25.0 dB in the whole frequency range. In order to achieve the targeted RF performance, it is imperative to have accurate transistor models over the frequency range of operation, transistor configuration mode and operating bias points. Using smaller periphery transistors results in lower extrinsic & intrinsic input and output capacitances that lead to achieving very wide band performance. Thus, device sizes as small as 2x10 μm were used for the design. A cascode topology, which is a series connection of a common-source and common-gate field effect transistor (FET), was used to achieve large bandwidth of operation, high reverse isolation and high input and output impedance. Using very small periphery devices at cascode bias points posed limitation in the design in terms of accuracy of transistor models under these conditions, specifically at high frequencies i.e., above 50 GHz. One of the major systemrequirements for the application of MMIC ultra-broadband amplifiers in instrumentation is to achieve and maintain high reverse isolation (≤ -25.0 dB) over the whole frequency range of operation which cannot be achieved alone by the cascode topology and new design techniques have to be devised. These twomajor challenges, namely high frequency small periphery FET model modification & development and design technique to achieve high reverse isolation in ultra-broadband frequency range have been addressed in this research.
2

On-Chip Integrated Distributed Amplifier and Antenna Systems in SiGe BiCMOS for Transceivers with Ultra-Large Bandwidth

Testa, Paolo Valerio, Klein, Bernhard, Hahnel, Ronny, Plettemeier, Dirk, Carta, Corrado, Ellinger, Frank 23 June 2020 (has links)
This paper presents an overview of the research work currently being performed within the frame of project DAAB and its successor DAAB-TX towards the integration of ultra-wideband transceivers operating at mm-wave frequencies and capable of data rates up to 100 Gbits–¹. Two basic systemarchitectures are being considered: integrating a broadband antenna with a distributed amplifier and integrate antennas centered at adjacent frequencies with broadband active combiners or dividers. The paper discusses in detail the design of such systems and their components, fromthe distributed amplifiers and combiners, to the broadband silicon antennas and their single-chip integration. All components are designed for fabrication in a commercially available SiGe:C BiCMOS technology. The presented results represent the state of the art in their respective areas: 170 GHz is the highest reported bandwidth for distributed amplifiers integrated in Silicon; 89 GHz is the widest reported bandwidth for integrated-system antennas; the simulated performance of the two antenna integrated receiver spans 105 GHz centered at 148GHz, which would improve the state of the art by a factor in excess of 4 even against III-V implementations, if confirmed by measurements.

Page generated in 0.1259 seconds