Spelling suggestions: "subject:"treering data"" "subject:"treeing data""
1 |
Statistical models and techniques for dendrochronologyJubock, Z. H. January 1988 (has links)
No description available.
|
2 |
A new digital field data collection system for dendrochronologyBrewer, Peter W., Guiterman, Christopher H. 06 1900 (has links)
A wide variety of information or 'metadata' is required when undertaking dendrochronological sampling. Traditionally, researchers record observations and measurements on field notebooks and/or paper recording forms, and use digital cameras and hand-held GPS devices to capture images and record locations. In the lab, field notes are often manually entered into spreadsheets or personal databases, which are then sometimes linked to images and GPS waypoints. This process is both time consuming and prone to human and instrument error. Specialised hardware technology exists to marry these data sources, but costs can be prohibitive for small scale operations (>$2000 USD). Such systems often include proprietary software that is tailored to very specific needs and might require a high level of expertise to use. We report on the successful testing and deployment of a dendrochronological field data collection system utilising affordable off-the-shelf devices ($100-300 USD). The method builds upon established open source software that has been widely used in developing countries for public health projects as well as to assist in disaster recovery operations. It includes customisable forms for digital data entry in the field, and a marrying of accurate GPS location with geotagged photographs (with possible extensions to other measuring devices via Bluetooth) into structured data fields that are easy to learn and operate. Digital data collection is less prone to human error and efficiently captures a range of important metadata. In our experience, the hardware proved field worthy in terms of size, ruggedness, and dependability (e.g., battery life). The system integrates directly with the Tellervo software to both create forms and populate the database, providing end users with the ability to tailor the solution to their particular field data collection needs.
|
3 |
Fusing tree-ring and forest inventory data to infer influences on tree growthEvans, Margaret E. K., Falk, Donald A., Arizpe, Alexis, Swetnam, Tyson L., Babst, Flurin, Holsinger, Kent E. 07 1900 (has links)
Better understanding and prediction of tree growth is important because of the many ecosystem services provided by forests and the uncertainty surrounding how forests will respond to anthropogenic climate change. With the ultimate goal of improving models of forest dynamics, here we construct a statistical model that combines complementary data sources, tree-ring and forest inventory data. A Bayesian hierarchical model was used to gain inference on the effects of many factors on tree growth-individual tree size, climate, biophysical conditions, stand-level competitive environment, tree-level canopy status, and forest management treatments-using both diameter at breast height (dbh) and tree-ring data. The model consists of two multiple regression models, one each for the two data sources, linked via a constant of proportionality between coefficients that are found in parallel in the two regressions. This model was applied to a data set of similar to 130 increment cores and similar to 500 repeat measurements of dbh at a single site in the Jemez Mountains of north-central New Mexico, USA. The tree-ring data serve as the only source of information on how annual growth responds to climate variation, whereas both data types inform non-climatic effects on growth. Inferences from the model included positive effects on growth of seasonal precipitation, wetness index, and height ratio, and negative effects of dbh, seasonal temperature, southerly aspect and radiation, and plot basal area. Climatic effects inferred by the model were confirmed by a den-droclimatic analysis. Combining the two data sources substantially reduced uncertainty about non-climate fixed effects on radial increments. This demonstrates that forest inventory data measured on many trees, combined with tree-ring data developed for a small number of trees, can be used to quantify and parse multiple influences on absolute tree growth. We highlight the kinds of research questions that can be addressed by combining the high-resolution information on climate effects contained in tree rings with the rich tree-and stand-level information found in forest inventories, including projection of tree growth under future climate scenarios, carbon accounting, and investigation of management actions aimed at increasing forest resilience.
|
Page generated in 0.0902 seconds