Spelling suggestions: "subject:"trifluoroborate""
1 |
Synthesis Of Rare-earth Doped Lithium TriborateArdicoglu, Burcu 01 July 2005 (has links) (PDF)
Research in the field of non-linear optical (NLO) devices lead to an increasing interest in new borate compounds, capable of expanding the frequency range provided by common laser sources. Lithium triborate (LBO) is a newly developed ideal non-linear optical crystal used in laser weapon, welder, radar, tracker, surgery, communication, etc. Borates containing rare-earth elements are of great interest since they are found to be superior in non-linear optical applications. In this study, synthesis and identification of rare-earth doped lithium triborate was carried out.
Lithium triborate was produced from the solid-state reaction. LBO was then doped with some rare-earth elements (Gd, La, Y) in several different concentrations. Appropriate quantities of Li2CO3 and H3BO3, weighted separately, were mixed and
finely powdered. Then, the mixture was heated at 750 º / C for 14 hrs. The expected reaction is given below.
Li2CO3 + 6H3BO3 --> / 2LiB3O5 + CO2 + 9H2O
Prepared LiB3O5 and Gd2O3, La2O3 and Y2O3 samples were weighed separately at different concentrations and ground together. The mixture was then heated at 750 º / C for 7 hrs.
Characterization of the new products was done by X-Ray Diffraction (XRD) and Infrared (IR) analysis. Differential Thermal Analysis (DTA) was used for examination of the thermal properties of the compounds, morphology of new
compounds was observed by Scanning Electron Microscopy (SEM). The compounds are then subjected to thermoluminescence (TL) studies.
From the XRD studies, no change in the LBO phase related to the addition of rareearth elements was observed. However, peaks of those elements were also become apparent. IR analysis showed that there is no change related to B-O link with the addition of rare earth elements. DTA studies showed that the melting point of LBO decreases with the addition of rare earth elements. In the SEM images, two phases belonging to particles of rare earth elements and lithium triborate were observed clearly. With the TL analysis, it was considered that the samples show dose response but also it was realized that they are affected by fading.
|
2 |
Synthesis And Characterization Of Lithium Triborate By Different Synthesis Methods And Their Thermoluminescent PropertiesDepci, Tolga 01 May 2009 (has links) (PDF)
Lithium triborate, (LiB3O5), is a technologically important material for diverse applications, such as nonlinear optical materials and surface acoustic wave devices or, etc. Furthermore, it is suggested as an efficient thermoluminescent material. LiB3O5, suitable to dosimetric usage, was produced by different synthesis methods which were high temperature solid state reaction, microwave solid state reaction, microwave assisted high temperature solid state reaction and precipitation assisted high temperature solid state reaction. After the synthesis, metal oxides were doped into LiB3O5 to enhance its thermoluminescent properties. Identification and characteristics of LiB3O5 were determined by X-ray diffraction (XRD), Fourier Transform Infra red (FTIR) analyses, Differential Thermal Analyses (DTA), Scanning Electron Microscopy (SEM) and Particle Size Analyzer. The glow curves were obtained by using thermoluminescent (TL) reader.
Among four different synthesis methods applied, high temperature solid state method needs very high temperatures and long duration of heating. Therefore, the effect of the reaction temperature, the time intervals, and also starting materials on production of LiB3O5 were investigated. Characterization studies indicated that LiB3O5 could be produced at 710 ° / C for 4 hours. Among the starting materials used, Li2CO3 and
H3BO3 combination was found the most suitable for the synthesis of LiB3O5 considering phase impurity as well as cost. LiB3O5 synthesized by microwave energy was unsuccessful. However, LiB3O5 could be synthesized by microwave assisted synthesis method by adding distilled water, urea and sucrose separately as thermal auxiliaries in microwave pre-heating step. The use of microwave and conventional ovens subsequently shortened the duration of heating. The crystallinity of LiB3O5 was the best in 40 % sucrose addition to initial mixture. The best method for synthesis of LiB3O5 has been found as precipitation assisted high temperature solid state method. This method yields LiB3O5 with higher phase purity as compared to these produced by other methods applied in this thesis and reported in the literature. It seems to be rather attractive since it is simple and needs less energy. Rare earth metal oxides, CuO and Al2O3 were added to LiB3O5 as activators to improve its TL properties. LiB3O5 synthesized by precipitation assisted high temperature solid state reaction and doped by 5 % wt Al2O3 showed the best TL property. Its main dosimetric characteristics revealed that LiB3O5 seemed to be suitable to medical and radiotherapy applications, since it was non-toxic, tissue equivalent, and chemically inert to body fluids.
|
Page generated in 0.0458 seconds