Spelling suggestions: "subject:"triplet invariant""
1 |
Face Detection and Pose Estimation using Triplet Invariants / Ansiktsdetektering med hjälp av triplet-invarianterIsaksson, Marcus January 2002 (has links)
Face detection and pose estimation are two widely studied problems - mainly because of their use as subcomponents in important applications, e.g. face recognition. In this thesis I investigate a new approach to the general problem of object detection and pose estimation and apply it to faces. Face detection can be considered a special case of this general problem, but is complicated by the fact that faces are non-rigid objects. The basis of the new approach is the use of scale and orientation invariant feature structures - feature triplets - extracted from the image, as well as a biologically inspired associative structure which maps from feature triplets to desired responses (position, pose, etc.). The feature triplets are constructed from curvature features in the image and coded in a way to represent distances between major facial features (eyes, nose and mouth). The final system has been evaluated on different sets of face images.
|
2 |
Face Detection and Pose Estimation using Triplet Invariants / Ansiktsdetektering med hjälp av triplet-invarianterIsaksson, Marcus January 2002 (has links)
<p>Face detection and pose estimation are two widely studied problems - mainly because of their use as subcomponents in important applications, e.g. face recognition. In this thesis I investigate a new approach to the general problem of object detection and pose estimation and apply it to faces. Face detection can be considered a special case of this general problem, but is complicated by the fact that faces are non-rigid objects. The basis of the new approach is the use of scale and orientation invariant feature structures - feature triplets - extracted from the image, as well as a biologically inspired associative structure which maps from feature triplets to desired responses (position, pose, etc.). The feature triplets are constructed from curvature features in the image and coded in a way to represent distances between major facial features (eyes, nose and mouth). The final system has been evaluated on different sets of face images.</p>
|
Page generated in 0.0576 seconds