• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 6
  • 2
  • Tagged with
  • 21
  • 21
  • 9
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spectres de processus de Markov

Pan-Yu, Yiyan 18 June 1997 (has links) (PDF)
No description available.
2

Courbure de Ricci grossière de processus markoviens

Veysseire, Laurent 16 July 2012 (has links) (PDF)
La courbure de Ricci grossière d'un processus markovien sur un espace polonais est définie comme un taux de contraction local de la distance de Wasserstein W1 entre les lois du processus partant de deux points distincts. La première partie de cette thèse traite de résultats valables dans le cas d'espaces polonais quelconques. On montre que l'infimum de la courbure de Ricci grossière est un taux de contraction global du semigroupe du processus pour la distance W1. Quoiqu'intuitif, ce résultat est difficile à démontrer en temps continu. La preuve de ce résultat, ses conséquences sur le trou spectral du générateur font l'objet du chapitre 1. Un autre résultat intéressant, faisant intervenir les valeurs de la courbure de Ricci grossière en différents points, et pas seulement son infimum, est un résultat de concentration des mesures d'équilibre, valable uniquement en temps discret. Il sera traité dans le chapitre 2. La seconde partie de cette thèse traite du cas particulier des diffusions sur les variétés riemanniennes. Une formule est donnée permettant d'obtenir la courbure de Ricci grossière à partir du générateur. Dans le cas où la métrique est adaptée à la diffusion, nous montrons l'existence d'un couplage entre les trajectoires tel que la courbure de Ricci grossière est exactement le taux de décroissance de la distance entre ces trajectoires. Le trou spectral du générateur de la diffusion est alors plus grand que la moyenne harmonique de la courbure de Ricci. Ce résultat peut être généralisé lorsque la métrique n'est pas celle induite par le générateur, mais il nécessite une hypothèse contraignante, et la courbure que l'on doit considérer est plus faible.
3

Courbure de Ricci grossière de processus markoviens / Coarse Ricci curvature of Markov processes

Veysseire, Laurent 16 July 2012 (has links)
La courbure de Ricci grossière d’un processus markovien sur un espace polonais est définie comme un taux de contraction local de la distance de Wasserstein W1 entre les lois du processus partant de deux points distincts. La première partie de cette thèse traite de résultats valables dans le cas d’espaces polonais quelconques. On montre que l’infimum de la courbure de Ricci grossière est un taux de contraction global du semigroupe du processus pour la distance W1. Quoiqu’intuitif, ce résultat est difficile à démontrer en temps continu. La preuve de ce résultat, ses conséquences sur le trou spectral du générateur font l’objet du chapitre 1. Un autre résultat intéressant, faisant intervenir les valeurs de la courbure de Ricci grossière en différents points, et pas seulement son infimum, est un résultat de concentration des mesures d’équilibre, valable uniquement en temps discret. Il sera traité dans le chapitre 2. La seconde partie de cette thèse traite du cas particulier des diffusions sur les variétés riemanniennes. Une formule est donnée permettant d’obtenir la courbure de Ricci grossière à partir du générateur. Dans le cas où la métrique est adaptée à la diffusion, nous montrons l’existence d’un couplage entre les trajectoires tel que la courbure de Ricci grossière est exactement le taux de décroissance de la distance entre ces trajectoires. Le trou spectral du générateur de la diffusion est alors plus grand que la moyenne harmonique de la courbure de Ricci. Ce résultat peut être généralisé lorsque la métrique n’est pas celle induite par le générateur, mais il nécessite une hypothèse contraignante, et la courbure que l'on doit considérer est plus faible. / The coarse Ricci curvature of a Markov process on a Polish space is defined as a local contraction rate of the W1 Wasserstein distance between the laws of the process starting at two different points. The first part of this thesis deals with results holding in the case of general Polish spaces. The simplest of them is that the infimum of the coarse Ricci curvature is a global contraction rate of the semigroup of the process for the W1 distance between probability measures. Though intuitive, this result is diffucult to prove in continuous time. The proof of this result, and the following consequences for the spectral gap of the generator are the subject of Chapter 1. Another interesting result, using the values of the coarse Ricci curvature at different points, and not only its infimum, is a concentration result for the equilibrium measures, only holding in a discrete time framework. That will be the topic of Chapter 2. The second part of this thesis deals with the particular case of diffusions on Riemannian manifolds. A formula is given, allowing to get the coarse Ricci curvature from the generator of the diffusion. In the case when the metric is adapted to the diffusion, we show the existence of a coupling between the paths starting at two different points, such that the coarse Ricci curvature is exactly the decreasing rate of the distance between these paths. We can then show that the spectral gap of the generator is at least the harmonic mean of the Ricci curvature. This result can be generalized when the metric is not the one induced by the generator, but it needs a very restricting hypothesis, and the curvature we have to choose is smaller.
4

Inégalités de Sobolev logarithmiques et hypercontractivité en mécanique statistique et en E.D.P.

Gentil, Ivan 18 December 2001 (has links) (PDF)
Dans cette thèse nous nous intéressons à des inégalités fonctionnelles comme les inégalités de Poincaré, Sobolev logarithmique, Sobolev, et celles appelées inégalités de transport. Dans un premier temps, nous étudions les inégalités de Poincaré et de Sobolev logarithmique pour des modèles de mécanique statistique. Cette étude nous permet de donner une nouvelle classe de phases telle que les mesures de Gibbs associées satisfassent à ces deux inégalités. Nous étudions dans un second temps, les inégalités de Sobolev logarithmique et de Sobolev par le biais des équations de Hamilton-Jacobi. Nous montrons, de la même façon que Gross en 1975 pour les semi-groupes de diffusion, l'équivalence entre l'inégalité de Sobolev logarithmique et l'hypercontractivité des solutions des équations de Hamilton-Jacobi. Cette équivalence permet de montrer, par une nouvelle méthode que celle utilisée par Otto et Villani, que l'inégalité de Sobolev logarithmique implique une inégalité de transport quadratique. De la même manière que Varopoulos en 1985 pour les semi-groupes de diffusion, nous donnons le lien entre l'inégalité de Sobolev et l'ultracontractivité des solutions des équations de Hamilton-Jacobi. Pour finir nous étudions les inégalités de transport dans un cadre général. Cette étude permet d'une part de donner le lien entre des inégalités de Sobolev logarithmiques modifiées et des inégalités de transport particulières et d'autre part de donner un exemple d'inégalité de transport quadratique pour une mesure en dimension infinie, la mesure de Wiener.
5

Vitesse de convergence vers l'équilibre de systèmes de particules en intéraction / Speed of convergence towards equilibrium for some systems of interacting particles

Buyer, Paul de 26 September 2017 (has links)
Dans cette thèse nous nous intéressons principalement aux comportements diffusifs et à la vitesse de convergence vers l'équilibre au sens de la variance de différents modèles de systèmes de particules interagissantes ainsi qu'à un problème de percolation. Nous commençons par introduire informellement le premier sujet. Dans l'étude des systèmes dynamiques, un processus de Markov apériodique et irréductible admettant une mesure invariante converge vers celle-ci en temps long. Dans ce travail, nous nous intéressons ici à la quantification de la vitesse de cette convergence en étudiant la variance du semigroupe associé à la dynamique appliqué à certains ensembles de fonctions. Deux vitesses de convergence sont envisagées ici : la vitesse de de convergence exponentielle impliquée par un trou spectral dans le générateur du processus; une vitesse de convergence polynomiale dite diffusive lorsque le trou spectral est nul.Dans le deuxième chapitre, nous nous étudions le modèle de marche aléatoire en milieu aléatoire et nous prouvons dans ce cadre une vitesse de décroissance de type diffusive.Dans le troisième chapitre, nous étudions le modèle d'exclusion simple à taux dégénérés en dimension 1 appelé ka1f. Nous prouvons des bornes sur le trou spectral en volume fini et une vitesse de décroissance sous-diffusive en volume infini.Dans le quatrième chapitre, nous étudions un modèle à spins non bornés. Nous prouvons une correspondance entre la covariance de l'évolution de deux masses et une marche aléatoire en milieu aléatoire dynamique. Dans le dernier chapitre, nous nous intéressons à un modèle de percolation et à l'étude d'une conjecture étudiant la distance de graphe au sens de la percolation. / In this thesis, we are interested mainly by the diffusive behaviours and the speed of convergence towards equilibrium in the sense of the variance of different models of interacting particles systems and a problem of percolation.We start by introducing unformally the first subject of interest. In the study of dynamic systems, a markov process aperiodic and irreducible having an invariant measure converges towards it in a long time. In this work, we are interested to quantify the speed of this convergence by studying the variance of the semigroup associated to the dynamic applied to some set of functions. Two speeds of convergence are considered: the exponential speed of convergence implied by a spectral gap in the generator of the process; a polynomial tome of convergence called diffusive when the spectral gap is null.In the second chapter, we study the model of random walk in random environment and we prove in this context a diffusive behavior of the speed of convergence.in the third chapter, we study the simple exclusion process with degenerate rates in dimension 1 called ka1F. We prove bounds on the spectral gap in finite volume and a sub-diffusive behavior in infinite volume. In the fourth chapter, we study an unbounded spin model. We prove a relation betweden the covariance of the evolution of two masses and a random walk in a dynamic random environment.In the last chapter, we are interested in the model of percolation and the study of a conjecture studying the distance of graph in the sense of the percolation.
6

Contraction de cônes complexes multidimensionnels / Contraction of complex multidimensional cones

Novel, Maxence 30 November 2018 (has links)
L'objet de cette thèse est l'introduction, l'étude et l'utilisation des cônes complexes multidimensionnels. Dans un premier temps, nous étudions la grassmannienne des espaces de Banach. Nous définissons une notion de bonne décomposition pour les espaces de dimension p et nous démontronsl'équivalence entre la distance de Hausdorff sur la grassmannienne et la distance fournie par une norme sur l'algèbre extérieure.Dans un deuxième temps, nous définissons les cônes complexes p-dimensionnels ainsi qu'une jauge sur les sous-espaces de dimension p de ces cônes. Nous montrons alors un principe de contraction pour cette jauge. Cela nous permet de prouver, pour un opérateur contractant un tel cône, l'existence d'un trou spectral séparant les p valeurs propres dominantes du reste du spectre. Nous utilisons cette théorie pourdémontrer un théorème de régularité analytique pour les exposants de Lyapunov d'un produit aléatoire d'opérateurs contractant un même cône.Nous donnons également une comparaison entre la distance de Hausdorff entre espaces vectoriels et notre jauge.Enfin, nous introduisons une notion de cône dual pour les cônes p-dimensionnels. Dans ce cadre, nous prouvons que les propriétéstopologiques d'un cône se traduisent en propriétés topologiques sur son dual, et réciproquement. Nous complétons le théorème de régularitéprécédent en démontrant l'existence et la régularité d'une décomposition de l'espace en "espace lent" et "espace rapide". / The subject of this thesis is the introduction, the study and the applications of multidimensional complex cones. First, we study the grassmannian of Banach space. We define a notion of right decomposition for p-dimensional spaces and we prove the equivalence between theHausdorff distance on the grassmannian and the distance given by a norm on the exterior algebra.Then, we define p-dimensional complex cones and a gauge on the subspaces of dimension p of these cones. We show a contraction principle for thisgauge. This allows us to prove, for an operator contracting such a cone, the existence of a spectral gap which isolate the p leading eigenvaluesfrom the rest of the spectrum. We use this theory to prove a theorem of analytic regularity for Lyapunov exponents of a random product ofoperators contracting a cone. We also give a comparison between the Hausdorff distance for vector spaces and our gauge.Finally, we introduce a notion of dual cone for p-dimensional cones. In this setting, we prove that the topological properties of a cone translateinto topological properties for its dual and conversely. We complete the previous regularity theorem by proving the existence and the regularity ofa dominated splitting of the space into a "fast space" and a "slow space".
7

Modélisation, étude mathématique et simulation des collisions

Baranger, Céline 17 June 2004 (has links) (PDF)
Dans ce travail, nous nous intéressons à des problèmes issus de la Mécanique des Fluides et plus particulièrement au cas des aérosols (ou sprays, c'est-à-dire un ensemble de particules en suspension dans un fluide environnant). Les phénomènes physiques mis en jeu sont modélisés par des équations aux dérivées partielles (EDP). La phase continue (fluide environnant) est décrite par des équations issues de la mécanique des milieux continus de type Navier-Stokes ou Euler. La phase dispersée est décrite par une équation cinétique de type Boltzmann.<br /><br />Le premier résultat que nous présentons est consacré à l'étude mathématique d'un couplage entre une équation cinétique de type Vlasov et les équations d'Euler isentropiques. Ces équations modélisent un spray fin. Nous démontrons l'existence en temps petit d'une solution régulière pour le couplage Vlasov-Euler isentropique.<br /><br />Ensuite, nous présentons les équations précises relatives à la modélisation des collisions, coalescences et fragmentations dans un spray.<br /><br />Nous décrivons par la suite la simulation numérique du couplage fluide-cinétique dans un code industriel (Commissariat à l'Énergie Atomique), en particulier l'ajout des phénomènes de collisions.<br /><br />Un deuxième modèle de fragmentation est également présenté. Ce modèle est plus pertinent dans les cas où les particules de la phase dispersée ont un grand nombre de Weber.<br /><br />Enfin, nous présentons un résultat concernant une estimation explicite de trou spectral pour l'opérateur de Boltzmann avec potentiels durs linéarisé, et pour l'opérateur de Landau avec potentiels durs linéarisé.
8

Inégalités fonctionnelles liées aux formes de Dirichlet. De l'isopérimétrie aux inégalités de Sobolev.

Fougères, Pierre 18 October 2002 (has links) (PDF)
Les semi-groupes de Markov ergodiques permettent d'approcher des mesures de probabilité au moyen d'inégalités fonctionnelles. L'objectif de la thèse est l'étude de certaines de ces inégalités, de l'isopérimétrie gaussienne aux inégalités de Sobolev. Nous cherchons essentiellement à établir des liens entre elles, à déterminer leurs constantes optimales et à obtenir des critères assurant leur existence. Le travail est divisé en trois parties. Dans la première , nous nous intéressons aux liens entre les inégalités de Sobolev logarithmiques (SL) et celles d'?isopérimétrie gaussienne de Bobkov (IGB). Nous montrons qu'?un semi-groupe de courbure minorée (éventuellement négative) qui satisfait à (SL) vérifie également une inégalité (IGB). Nous obtenons ainsi une inégalité (IGB) pour certains systèmes de spins. Dans la seconde partie, nous montrons que la constante de Poincaré d'une mesure de probabilité log-concave sur la droite réelle est universellement comparable au carré de la distance moyenne à la médiane. La preuve repose sur un calcul de variations dans l'ensemble des fonctions convexes. La dernière partie est consacrée à de nouveaux critères conduisant aux inégalités de Sobolev lorsque le critère de courbure-dimension (CD) de Bakry et Emery est mis en défaut. La technique utilisée repose sur la construction (au moyen de changements conformes de métrique et tensorisation) d?'une structure de Dirichlet en dimension supérieure qui satisfait un critère (CD) et se projette sur la structure de départ.
9

Diffusion Brillouin stimulée dans les fibres optiques : bruit d'intensité du laser et brûlage de trou spectral dans le générateur et l'amplificateur

Stepien, Lionel 17 December 2002 (has links) (PDF)
Le travail présenté dans cette thèse porte sur le bruit d'intensité du laser Brillouin à fibre ainsi que sur le brûlage de trou spectral du processus de diffusion Brillouin stimulée (DBS) dans les fibres. Le bruit d'intensité du laser Brillouin provient principalement de deux sources : les fluctuations du coefficient de réinjection et le bruit d'intensité du laser de pompe. L'influence de chacune d'elles sur le bruit d'intensité du laser Brillouin est évaluée au moyen d'une fonction de transfert. Une étude théorique de ces deux fonctions a été réalisée puis validée expérimentalement. Nous montrons ensuite théoriquement que le brûlage de trou spectral, déjà observé expérimentalement pour le générateur et l'amplificateur Brillouin, peut être interprété en supposant que l'élargissement spectral du processus de DBS est de nature homogène. Le brûlage de trou provient de la saturation du gain conjuguée au couplage entre les variations de l'amplitude des champs optiques.
10

Produits de matrices aléatoires :exposants de Lyapunov pour des matrices aléatoires suivant une mesure de Gibbs, théorèmes limites pour des produits au sens max-plus

Merlet, Glenn 06 October 2005 (has links) (PDF)
On appelle suite récurrente stochastique (SRS) dirigée par une suite de matrices aléatoires une suite de variables aléatoires telles que le terme de rang n+1 est obtenu en multipliant celui de rang n par la enième matrice. Cette thèse porte sur le comportement asymptotique de telles suites. Dans la première partie, les matrices sont inversibles et on donne un critère de séparation des exposants de Lyapunov quand la suite de matrices suit une mesure de Gibbs sur un sous-shift de type fini. Dans la seconde partie, les produits se font au sens max-plus. On montre que le comportement des SRS au premier ordre est essentiellement déterminé par celui de certains blocs diagonaux et que la propriété de perte de mémoire, qui assure la stabilité des SRS, est générique. Si une suite de matrices (ou d'applications topicales) aléatoires est i.i.d. et a la propriété de perte de mémoire, alors les SRS qu'elle dirige vérifient des théorèmes limites. Ce résultat est obtenu par la méthode du trou spectral.

Page generated in 0.0827 seconds